• 제목/요약/키워드: Performance degradation

검색결과 3,425건 처리시간 0.038초

Enhancement of Rejection Performance using the PSO-NCM in Noisy Environment (잡음 환경하에서의 PSO-NCM을 이용한 거절기능 성능 향상)

  • Kim, Byoung-Don;Song, Min-Gyu;Choi, Seung-Ho;Kim, Jin-Young
    • Speech Sciences
    • /
    • 제15권4호
    • /
    • pp.85-96
    • /
    • 2008
  • Automatic speech recognition has severe performance degradation under noisy environments. To cope with the noise problem, many methods have been proposed. Most of them focused on noise-robust features or model adaptation. However, researchers have overlooked utterance verification (UV) under noisy environments. In this paper we discuss UV problems based on the normalized confidence measure. First, we show that UV performance is also degraded in noisy environments with the experiments of an isolated word recognition. Then we observe how the degradation of UV performances is suffered. Based on the UV experiments we propose a modeling method of the statistics of phone confidences using sigmoid functions. For obtaining the parameters of the sigmoidal models, the particle swarm optimization (PSO) is adopted. The proposed method improves 20% rejection performance. Our experimental results show that the PSO-NCM can apply noise speech recognition successfully.

  • PDF

Electrochemical Degradation of Benzoquinone in a Flow through Cell with Carbon Fibers

  • Yoon, Jang-Hee;Yang, Jee-Eun;Shim, Yoon-Bo;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권3호
    • /
    • pp.403-407
    • /
    • 2007
  • The anodic degradation of benzoquinone(BQ), a model compound for wastewater treatment was carried out using a home-made flow-through electrochemical cell with carbon fibers. To optimize the controlled current electrolysis condition of an aqueous BQ solution, the experimental variables affecting the degradation of BQ, such as the applying current, pH, reaction time, and flow rate of the BQ solution were examined. The degradation products of the oxidation reaction were identified by High Performance Liquid Chromatography and Inductively Coupled Plasma Atomic Emission Spectrometer. Low molecular weight aliphatic acids, and CO2 were the major products in this experiment. The removal efficiency of BQ from the solution increased with the applying current and time. 99.23% of 1.0 × 10-2 M BQ was degraded to aliphatic acids and CO2 when the applying current is 175 mA in a 12 hr electrolysis.

Electric-Field Induced Degradation of Ionic Solids

  • Chun, Ja-Kyu;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • 제49권1호
    • /
    • pp.48-55
    • /
    • 2012
  • Degradation of performance and life time of a functional material or device thereof is induced, to a great extent, by mass transfer in the material that is driven by various thermodynamic forces imposed intentionally or accidentally during its operation or service. The forces are any gradient of intensive thermodynamic variables, component chemical potentials, electrical potential, temperature, stresses, and the like. This paper reviews electric-field induced degradation phenomena in ionic solid compounds including insulation resistance degradation, crystal shift, microstructural alterations, compositional unmixing, and compound decomposition. Their inner workings are also discussed qualitatively.

Degradation Analysis of User Terminal EIRP and G/T due to Station-Keeping Variation of Stratospheric Platform

  • Ku, Bon-Jun;Ahn, Do-Seob;Baek, Dong-Cheol;Park, Kwang-Ryang;Lee, Seong-Pal
    • ETRI Journal
    • /
    • 제22권1호
    • /
    • pp.12-19
    • /
    • 2000
  • Wireless communication systems using airship have been proposed in worldwide. The airship will be located at the stratosphere about $20{\sim}23\;km$ above the sea level. The position of airship will vary within the station keeping range with time due to the drag of the wind in the stratosphere. When the earth station antenna has a high gain without the tracking function, the antenna performance may be degraded by a small variation of the airship. This means that variation of airship location could result in serious degradation of the system performance. In this paper, degradation in earth station's Equivalent Isotropic Radiated Power (EIRP) and Gain to noise Temperature ratio (G/T) due to the stratospheric platform movements has been derived by calculating the deviation angle of the main beam directions between the earth station and the platform antenna. In this case, the antenna of the earth station has been assumed circular and/or patch array antennas.

  • PDF

Degradation Prediction and Analysis of Lithium-ion Battery using the S-ARIMA Model with Seasonality based on Time Series Models (시계열 모델 기반의 계절성에 특화된 S-ARIMA 모델을 사용한 리튬이온 배터리의 노화 예측 및 분석)

  • Kim, Seungwoo;Lee, Pyeong-Yeon;Kwon, Sanguk;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제27권4호
    • /
    • pp.316-324
    • /
    • 2022
  • This paper uses seasonal auto-regressive integrated moving average (S-ARIMA), which is efficient in seasonality between time-series models, to predict the degradation tendency for lithium-ion batteries and study a method for improving the predictive performance. The proposed method analyzes the degradation tendency and extracted factors through an electrical characteristic experiment of lithium-ion batteries, and verifies whether time-series data are suitable for the S-ARIMA model through several statistical analysis techniques. Finally, prediction of battery aging is performed through S-ARIMA, and performance of the model is verified through error comparison of predictions through mean absolute error.

Kinetics of Thermal Degradation of Polypropylene/Nanoclay/Wood Flour Nanocomposites

  • Mohan, D. Jagan;Lee, Sun-Young;Kang, In-Aeh;Doh, Geum-Hyun;Park, Byung-Dae;Wu, Qinglin
    • Journal of the Korean Applied Science and Technology
    • /
    • 제24권3호
    • /
    • pp.278-286
    • /
    • 2007
  • As a part of enhancing the performance of wood-plastic composites (WPC), polypropylene (PP)/ nanoclay (NC)/ wood flour (WF) nanocomposites were prepared using melt blending and injection molding process to evaluate their thermal stability. Thermogravimetric analysis (TGA) was employed to investigate thermal degradation kinetics of the nanocomposites both dynamic and isothermal conditions. Dynamic scans of the TGA showed an increased thermal stability of the nanocomposites at moderate wood flour concentrations (up to 20 phr, percentage based on hundred percent resin) while it decreased with the addition of 30 phr wood flour. The activation energy $(E_a)$ of thermal degradation of nanocomposites increased when nanoclay was added and the concentration of wood flour increased. Different equations were used to evaluate isothermal degradation kinetics using the rate of thermal degradation of the composites, expressed as weight loss (%) from their isothermal TGA curves. Degradation occurred at faster rate in the initial stages of about 60 min., and then proceeded in a gradual manner. However, nanocomposites with wood flour of 30 phr heated at $300^{\circ}C$ showed a drastic difference in their degradation behavior, and reached almost a complete decomposition after 40 min. of the isothermal heating. The degree of decomposition was greater at higher temperatures, and the residual weight of isothermal degradation of nanocomposites greatly varied from about 10 to 90%, depending on isothermal temperatures. The isothermal degradation of nanocomposites also increased their thermal stability with the addition of 1 phr nanoclay and of wood flour up to 20 phr. But, the degradation of PP100/NC1/MAPP3/WF30 nanocomposites with 30 phr wood flour occurs at a faster rate compared to those of the others, indicating a decrease in their thermal stability.

Performance analysis of PSK communication system according to the types of disturbance of electromagnetic interference in an impulsive noise environment (임펄스 잡음 환경하에서 전자파 장해 (EMI)의 유형에 따른 PSK 통신시스템의 성능 해석)

  • 조성언;이기정;고봉진;조성준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제7권1호
    • /
    • pp.1-14
    • /
    • 1996
  • The purpose of this paper is to analyze the performance of M-ary PSK communication system according to the types of electromagnetic interference in an impulsive noise environment. We have introduced Gaussian, sinusoidal and rectangular waves as a electromagnetic interference. Using the derived equations, we evaluated the error performance of the BPSK and QPSK system in the presence of electromagnetic interference and impulsive noise. From results, we have obtained that the Gaussian wave produced the most significant performance degradation and that sinusoidal wave produced more performance degradation than rectangular wave. Therefore, without knowing the types of electromagnetic interference, it is best to regard it as Gaussian wave when designing a communication system. In addition, we could found out that the error performance degrades as impulsive noise becomes strong and the error performance can not be improved significantly even the electromagnetic interference becomes weak. Therefore, this describes that the impulsive noise affects dominantly to the performance degradation.

  • PDF

Variation of Material Properties of Fire-killed Timber - Impact of Time on Degradation of Mechanical Properties - (산불 피해목의 재질변화에 관한 연구(II) - 산불 피해 소나무의 경시적 재질변화 -)

  • Park, Jung-Hwan;Park, Byung-Soo;Kim, Kwang-Mo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권1호
    • /
    • pp.30-35
    • /
    • 2008
  • Degradation of mechanical properties of fire-killed Korean red pine has been investigated after death in 5 years period. Impact bending absorbed energy was the most sensitive property by elapsed time after forest fire. It is an indication of incipient decay of the wood and can be useful indicator to monitor any change of mechanical property of fire-killed tree after death. Degradation of mechanical properties was more pronounced in sapwood than heartwood. Impact bending absorbed energy was more reduced than any other properties in both sapwood and heartwood, while compressive strength was least impacted by elapsed time after forest fire. It is recommended that the fire-killed Korean red pine can be harvested in one year after the fire for industrial uses by considering decay and consequent changes of mechanical properties.

Operating Characteristics of Low Vacuum Pumps (저진공 펌프의 운전 특성)

  • 임종연;심우건;정광화
    • Journal of the Korean Vacuum Society
    • /
    • 제12권2호
    • /
    • pp.93-104
    • /
    • 2003
  • For evaluation of durability of low vacuum pumps, it is required to examine the performance and degradation of low vacuum pumps. Pump degradation may result from abnormalities associated with the performance in many areas of pump operation. The diagnostics method can be used to monitor the pump performance in the semi-conductor process line. Based on the mechanical defect of the pump, the dynamic response and reliability of the system for performance test, and the dynamic characteristics of the pump were experimentally assessed. The theoretical work rate for the compression process in the pump was calculated, and then the efficiency of the pump associated with the power consumption was evaluated. This analysis will be useful in detecting pump degradation with increasing the power consumption. To determine the predominant factors of pump degradation, it is important to evaluate the entire pumping system. We studied vibration, dynamic pressure, pumping speed, and power consumption of low vacuum pumps. Our results can be utilized for the future research on the evaluating technology of durability of low vacuum pumps.

Performance Degradation of Dead-end Type PEMFC by Startup and Shutdown Cycles (시동/정지 반복에 의한 데드엔드형 고분자전해질 연료전지의 성능 감소)

  • Jeong, Jaehyeun;Jeong, Jaejin;Song, Myunghyun;Chung, Hoibum;Na, Ilchai;Lee, Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.540-544
    • /
    • 2013
  • During start up and shut down of a proton exchange membrane fuel cells (PEMFC), the performance and lifetime of PEMFC were reduced. In this study, effect of startup and shutdown were investigated in dead-end type PEMFC using oxygen as a cathode gas with polarization curve, impedance spectroscopy (EIS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Dummy load which eliminates residual hydrogen and oxygen during startup and shutdown operation should be applied to mitigated the degradation of PEMFC performance. At 50% relative humidity (RH) under the repetitive on/off cycling, the cell performance decayed faster than at 100% RH because of corrosion of the cathode carbon support. Water suppling into cell reduced the degradation rate of dead-end type PEMFC during start up and shut down cycling at 50% RH.