• Title/Summary/Keyword: Performance based design (PBD)

Search Result 60, Processing Time 0.023 seconds

DB Construction of Activation Temperature and Response Time Index for Domestic Fixed-temperature Heat Detectors in Ceiling Jet Flow (천장제트기류에 대한 국내 정온식 열감지기의 작동온도 및 반응시간지수(RTI)에 관한 DB 구축)

  • Yoon, Ga-Yeong;Han, Ho-Sik;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • The accurate prediction of fire detector activation time is required to ensure the reliability of fire modeling during the safety assessment of performance-based fire safety design. The main objective of this study is to determine the activation temperature and the response time index (RTI) of a fixed heat detector, which are the main input factors of a fixed-temperature heat detector applied to the fire dynamics simulator (FDS), a typical fire model. Therefore, a fire detector evaluator, which is a fire detector experimental apparatus, was applied, and 10 types of domestic fixed-temperature heat detectors were selected through a product recognition survey. It was found that there were significant differences in the activation temperature and RTI among the detectors. Additionally, the detector activation time of the FDS with the measured DB can be predicted more accurately. Finally, the DB of the activation temperature and RTI of the fixed-temperature heat detectors with reliability was provided.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Combustibles in Residential and Office Spaces (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 -주거 및 사무공간 가연물을 중심으로)

  • Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The design fire based on the heat release rate (HRR) of combustibles can significantly affect the assessment of fire safety in the performance-based design (PBD). In the present PBD, however, limited information in the foreign literature has been used without further verification due to the lack of fire information in domestic combustibles. The objective of this study is to provide information on the HRR and fire growth rate for various combustibles in residential and office spaces. To end this, the fire experiments were carried out with single and multiple combustibles. The peak HRR of combustibles used in the present study had a range of 36 kW~1,092 kW. The fire growth rates were also $0.003kW/s^2{\sim}0.0287kW/s^2$ and $0.003kW/s^2{\sim}0.0838kW/s^2$ for the residential and office spaces, respectively. In particular, a sofa had the highest fire risk in terms of the peak HRR and fire growth rate. Finally, a methodology for calculating the peak HRR in a space was proposed through correlation analysis between the peak HRR and exposed surface of various combustibles.

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

A Study on Required Safe Egress Time (RSET) Comparison and Error Calculation in Relation to Fire Room Range Set Conditions of Performance Based Fire Safety Designers (성능위주설계자들의 화재실 범위 설정 방식에 따른 소요피난안전시간(RSET) 비교 및 오차산정에 관한 연구)

  • Baek, Sona;Choi, Jun-Ho;Hong, Won-Hwa;Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.73-78
    • /
    • 2016
  • The Installation, Maintence, and Safety Control of Fire-fighting Systems Act of South Korea regulates that over 30-storey high-rise buildings including underground spaces should vitally perform the Performance-based Design to minimize property damage and personal injury as a fire risk assessment in advance. Therefore a PBD designer such as a fire safety professional engineer evaluate occupant's life safety by a scientific methodology. In order to evaluate the life safety, fire safety designers calculate the Required Safety Egress Time (RSET) which does not have the legal criteria regarding the standard method of calculation yet. So this way has been showing different results depending upon the designer's choice, knowledges and experiences. In this study, RSET calculation methods by six designers respectively were analysed from the thirteen reports of real performance based design projects conducted in Busan for a last five years. In particular, the Response Time calculation methods which have the most powerful effect for figuring the RSET are compared with the other designer's to deduce an error value.

CO and Soot Yields of Wood Combustibles for a Kitchen Fire Simulation (주방 화재시뮬레이션을 위한 목재 가연물의 CO 및 Soot Yields)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.76-84
    • /
    • 2019
  • Experimental studies using an open cone calorimeter were conducted to provide information on the CO and soot yields of wood combustibles required for a kitchen fire simulation of PBD. A total of eight specimens were examined for medium density fiberboard (MDF) and particle board (PB), which are used widely in kitchen furniture production, depending on the water content, surface processing method, and surface color. The thermal penetration time related to the fire spread rate in the depth direction differed significantly according to the surface processing treatment method, even for a specimen of identical thickness. The CO yield ($y_{CO}$) of the MDF and PB series did not change significantly according to the combustion mode and surface treatment process in flaming mode. On the other hand, $y_{CO}$ was approximately 10 times higher in smoldering mode than in flaming mode. The soot yield ($y_{soot}$), however, varied considerably depending on the combustion mode and surface treatment process. In particular, a higher $y_{soot}$ was found in flaming mode and in the surface-treated specimens. Finally, the $y_{CO}$ and $y_{soot}$ of MDF and PB measured for the kitchen fire simulation of PBD were applied.

A Study on Improvement Way of Fire Simulation Modelling Field through Analysis of Performance-Based Design Reports of High-rise Residential Complex Building in B Metropolitan City (B도시지역 고층 주상복합건축물 성능위주설계도서 분석을 통한 화재 시뮬레이션 분야 개선방안에 관한 연구)

  • Seo, Min-Ji;Lee, Yang-Ju;An, Sung-Ho;Hwang, Cheol-Hong;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.80-85
    • /
    • 2017
  • Recently, in Korea, construction of high-rise buildings has been rapidly increasing. Therefore, in order to minimize the loss of life and property in the event of a fire, "performance-based design" which requires performance equal to or better than current regulations is obligatorily required. However, in the field of fire and evacuation simulation, which occupies a large part in the performance-based design, detailed technical guidelines have not yet been established. Therefore, various designers are proceeding with the computer simulation modelling by referring to the design report book previously performed. Especially, in the case of the fire simulation, according to the judgment of a designer the scenario type is selected and the input values is set. Even if the building is used for the same purpose, it is true that the result can be different depending on how and who designed it. Therefore, in this paper, we have investigated the fire scenarios type and scenarios input values by randomly examining 7 preliminary reports of performance-based design in B metropolitan city. We also propose the improvement strategy for fire simulation and lay the groundwork for establishment of technical guidelines for fire simulation for performance-based design.

A Study on escape using elevators in fire emergency (화재 시 승강기를 이용한 피난에 관한 연구)

  • Chung, Eui-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.55-68
    • /
    • 2007
  • Because of not accepted on escape using elevators in fire emergency has some background. In the background elevator hoistway has turn into smoke spread route in fire. The escape that used an elevator was not able to make ends meet; of the big confusion is expected that cannot control the escape adequately, and do that elevator facilities breakdown possibility by the fire water, the escaper shut in car. Therefore ban on elevator service in fire time as a general rule. Recently, a few company promote super high-rise architecture in the country, a fire disaster prevention and human life safety measures preparation for PBD(A Performance Based Fire Protection Design) are studied concretely. And there is the escape example in fire time that used an elevator in the foreign country. You must promote it so that the escape measures that used enclosed stairway and an elevator in charge of a function of the mutual supplement. The result of this research can be used for establishing the standard and regulation for using elevators in fire emergency.

  • PDF

A Study on the Algorithm of BRI 2002 in Japan (일본 BRI 2002의 알고리즘에 관한 고찰)

  • Choi, Mi-Lan;Shin, Yi-Chul;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.294-297
    • /
    • 2008
  • This is the study to investigate the Algorithm of BRI 2002 which is high level estimation program of smoke movement and phenomenon for performance based of design named 'ROOT C', made by Japan. BRI2002 is composed of 3 parts, one is main program, and the others are 4 subroutines and blockdata. The aim of this study is to analyze the BRI 2002, the only one certified program for the P.B.D and compare the other common program for smoke movement simulation program.

  • PDF

A Study on Assessment of Fire and Evacuation Safety in Environmental Energy Facilities (환경에너지시설의 화재 및 피난 안전성 평가에 관한 연구)

  • Jeon, Yong-Han;Han, Sang-Pil
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2019
  • In this study, fire and evacuation safety of environmental energy facilities using fire and evacuation simulation was examined as part of performance-oriented design. The worst-case fire scenarios in which fire-fighting facilities such as sprinkler fire extinguishing and smoke control systems are not working, and the FDS analyzes the visibility, temperature distribution, and carbon monoxide concentration distribution through FDS. The safety was examined. As a result, it was proved that evacuation could limit the visibility, temperature, and carbon monoxide concentration in a smooth range, based on the safety standards set by relevant laws. In other words, it was possible to verify the safety of fire and evacuation for environmental energy facilities where a large amount of combustibles and fires coexist.

A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations (다양한 형상의 밀폐된 구획에서 최대 열발생률 예측을 위한 상관식 검토)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In a closed-compartment with various configurations, the correlation that can predict the maximum heat release rate (HRR) with the changes in internal volume and fire growth rate was investigated numerically. The volume of the compartment was controlled by varying the length ratio based on the bottom surface shape of the ISO 9705 fire room, where the ceiling height was fixed to 2.4 m. As a main result, the effect of a change in ceiling height on the maximum HRR was examined by a comparison with a previous study that considered the change in ceiling height. In addition, a more generalized correlation equation was proposed that could predict the maximum HRR in closed-compartments regardless of the changes in ceiling height. This correlation had an average error of 7% and a maximum error of 19% for various fire growth rates when compared with the numerical results. Finally, the applicability of the proposed correlation to representative fire compartments applied to the domestic performance-based design (PBD) was examined. These results are expected to provide useful information on predicting the maximum HRR caused by flashover in closed-compartments as well as the input information required in a fire simulation.