• Title/Summary/Keyword: Performance Simulator

Search Result 1,919, Processing Time 0.025 seconds

The MPI CyberMotion Simulator: A Novel Research Platform to Investigate Human Control Behavior

  • Nieuwenhuizen, Frank M.;Bulthoff, Heinrich H.
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.122-131
    • /
    • 2013
  • The MPI CyberMotion Simulator provides a unique motion platform, as it features an anthropomorphic robot with a large workspace, combined with an actuated cabin and a linear track for lateral movement. This paper introduces the simulator as a tool for studying human perception, and compares its characteristics to conventional Stewart platforms. Furthermore, an experimental evaluation is presented in which multimodal human control behavior is studied by identifying the visual and vestibular responses of participants in a roll-lateral helicopter hover task. The results show that the simulator motion allows participants to increase tracking performance by changing their control strategy, shifting from reliance on visual error perception to reliance on simulator motion cues. The MPI CyberMotion Simulator has proven to be a state-of-the-art motion simulator for psychophysical research to study humans with various experimental paradigms, ranging from passive perception experiments to active control tasks, such as driving a car or flying a helicopter.

Development and its Validation of Sky Simulator Facilities for Daylighting Evaluation (자연채광 성능평가용 인공천공돔(Sky Simulator)의 개발 및 신뢰성 검증)

  • Kim, Jeong-Tai;Kim, Gon;Yu, In-Hye
    • KIEAE Journal
    • /
    • v.5 no.4
    • /
    • pp.51-57
    • /
    • 2005
  • For the evaluating daylighting performance, field measurement, scale model test and a set of computer tools can be applied. For the scale model measurements, the sky simulator is a vital facility to represent the desired sky conditions consistently. Recently K university has developed a large size sky simulator, 6m-diameter and 3.7m-height, that is suitable for the international standard. To verify the reliability of the sky simulator, the luminance distribution on the inner sky surface was measured and compared with the CIE standard overcast sky model. It is found that the sky simulator can be reproduced the CIE standard overcast sky condition with 4.3% as mean difference. K university sky simulator is fully validated for usability and accuracy for daylighting researches.

Study on the Pose Control of a 6 DOF Simulator with Pneumatic Cylinder Driving Apparatus (공기압실린더 구동장치를 이용한 6자유도 시뮬레이터의 자세제어에 관한 연구)

  • Jeong, J.H.;Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2007
  • In this study, 6-DOF simulator using pneumatic cylinder driving apparatus was manufactured because a pneumatic cylinder driving apparatus is superior to electric driving motor and hydraulic actuator, which used in traditional 6-DOF simulator, in competitive price and acceleration performance, and, 6-DOF motion can be realized at a low price in case that relatively low load is imposed on the simulator. The possible range of pose control of the simulator was investigated by inverse kinematics, and, it was controlled by a linear controller derived from linear model of the simulator. The Experimental results show that the simulator follows given coordinate well.

  • PDF

A Controller Design and Performance Evaluation for 6 DOF Driving Simulator (6자유도 주행 시뮬레이터 구동을 위한 제어기 설계 및 성능평가)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this paper Vehicle driving simulator have been used in the development and modification of models. A real-time simulation system and washout algorithm for an excavator have been developed for a driving simulator with six degrees of freedom. An interesting question, "how the 6 DOF Driving Simulator can be controlled optimally for the various tasks?" is not easy to be answered. This paper presents the hardware and software developed for a driving simulator of construction vehicle. A simulator can reduce cost and time a variety of driving simulations in the laboratory. Using its 6 DOF Simulator can move in various modes, and perform dexterous tasks. Driving simulators have begun to proliferate in the automotive industry and the associated research community. This effort involves the real-time dynamic of wheel-type excavator the design and manufacturing of the Stewart platform an integrated control system of the platform and three-dimensional graphic modeling of the driving environments.

A Study on the ARM Cortex-based AED simulator platform development (ARM Cortex 기반의 AED simulator 플랫폼 개발에 대한 연구)

  • Kim, Jeung Rae;Lee, Eun Jong;Chung, Ik Joo
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper, we implemented a high performance automated external defibrillator(AED) simulator that has various characteristics of virtual simulated patient(VSP) to verify important operations and functions of the AED. To verify the AED in various environment, the AED simulator should have the characteristics of VSP and can analyze the characteristics of electrical shock rhythm. In this paper, the implemented simulator has twenty seven electrocardiogram scenarios and we showed the implemented simulator has less error rate than conventional simulator in analyzing electrical shock rhythm.

  • PDF

Driving Performance Evaluation Using Bio-signals from the Prefrontal Lobe in the Driving Simulator

  • Kim, Young-Hyun;Kim, Yong-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.319-325
    • /
    • 2012
  • Objective: The aim of this study was to develop the assistive device for accelerator and brake pedals using bio-signals from the prefrontal lobe in the driving simulator and evaluate its performance. Background: There is lack of assistive devices for the driving in peoples with disabilities in Korea. However, if bio-signals and/or brain waves are used at driving a car, the people with serious physical limitations can improve their community mobility. Method: 15 subjects with driver's license participated in this study for experiment of driving performance evaluation in the simulator. Each subject drove the simulator the same course 10 times in three separated groups which use different interface controllers to accelerate and brake: (1) conventional pedal group, (2) joystick group and (3) bio-signal group(horizontal quick glance of the eyes and clench teeth). All experiments were recorded and the driving performances were evaluated by three inspectors. Results: Average score of bio-signal group for the driving in the simulator was increased 3% compared with the pedal group and was increased 9% compared with the joystick group(p<0.01). The subjects using bio-signals was decreased 44% in number of deduction compared with others because the device had the built-in modified cruise control. Conclusion: The assistive device for accelerator and brake pedals using bio-signals showed significantly better performance than using general pedal and a joystick interface(p<0.01). Application: This study can be used to design adaptive vehicle for driving in people with disabilities.

Motion Effects of the Ship on Crew Performance

  • Kim, Hongtae;Ha, Wook Hyun;Jang, Jun-Hyuk;Fang, Tae Hyun;Oh, Seungbin
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.333-340
    • /
    • 2013
  • Objective: The aim of this study is to provide a current knowledge of the multiple issues regarding motion effects on crew performance. Background: The motions of the ship may create motion sickness, nausea and vomit. Also, these motions also disturb the balance of crew members, increase the energy expenditure of crew for shipboard work, and result in increased levels of injury and fatigue. However, the motion effects of the ship on crew performance has not been thoroughly investigated. Method: Participants(N=10) were engaged in an experiment in 2 experimental environments(training ship and ship handling simulator) and 2 navigational conditions(day and night). The COP(Center of Pressure) data were recorded as an objective measure of postural balance control and the SSQ(Simulator Sickness Questionnaire) was used as a subjective measure of sickness. Results: The results showed that COP has a no significant difference based on experimental environments, but significant effect on SSQ. Conclusion: During the virtual simulator navigation, subjects showed significant SSQ level changes, which included decreased SSQ data. But, there is no significant difference of COP between training ship and ship handling simulator. Application: The results of this study could be applied to the next generation of ship design to decrease effect of motion at sea and to increase performance of ship crew.

The Study on developing on the Roaming simulator to estimate of the communication performance of Communication-Based Train Control system (무선통신기반 열차제어시스템의 통신성능평가를 위한 로밍시뮬레이터 개발에 관한 연구)

  • Lee, Kang-Mi;Jo, Hyun-Jeong;Shin, Kyung-Ho;Kim, Jong-Ki;Kim, Baek-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1454-1460
    • /
    • 2006
  • This paper assesses communication performance using a roaming simulator when roaming occurs between onboard and ground wireless communication devices for communication based train control system (CBTC). Generally, CBTC is defined as the system regularly collecting location and speed data from each train, transmitting distance information to a train, and optimizing train speed according to train performance. When a train is moving, roaming is also performed to continuously transmit and receive train control information between the ground controller and the train. To operate CBTC, packet loss rate should be less than 1%, roaming time less than 100ms during roaming. We developed a roaming simulator to check communication performance before installing ground and onboard equipments on actual wireless sections. The roaming simulator to be introduced in this paper is for roaming simulation before conducting CBTC field test, which is the project to develop Urban Rail Signaling System Standards, being conducted in KRRI. The simulation consists of one onboard wireless communication device and three ground wireless communication devices, and the roaming simulator estimate packet loss rate occurring during roaming process of the two devices. Therefore, if you use the roaming simulator before the field test, you can predict various problems to occur in actual environment and reduce time, cost and people necessary to resolve these problems.

  • PDF

Study on a Simulator for Generating Side Walking Path of the Biped Walking Robot (이족보행로봇의 횡보행 경로생성을 위한 시뮬레이터 연구)

  • Choi, Hyeung-Sik;Jeon, Chang-Hoon;Kang, Jin-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1285-1295
    • /
    • 2008
  • A research on a simulator for a side walking path of a 16 degree-of-freedom (d.o.f) biped walking robot(BWR) which is composed of 4 d.o.f upper-part body and 12 d.o.f lower-part of the body is presented. For generation of stable side walking motion, the kinematics, dynamics and the zero moment of point(ZMP) of the BWR were analyzed analytically and included in the simulator. To operate the motion simulator for stable side walking of the BWR, a graphic user interface program was developed which needs inputs for the side distance between legs, base joint angle, walking type, and walking velocity. The simulator was developed to generate joint angle data of legs for side walking, and the data are transmitted to the BWR for stable side walking. In the simulator, a new path function for smooth walking motion was proposed and applied to the simulator and actual motion of a BWR. Also for actual side walking, an algorithm for estimating backlashes of the actuating joint motors was proposed and included in the simulator. To validate the performance of the proposed motion simulator, the simulator was operated and its side walking data of the simulator were generated for a period of side walking.