• Title/Summary/Keyword: Performance Information Use

검색결과 5,694건 처리시간 0.046초

A Study on the Effects of BIM Adoption and Methods of Implementationin Landscape Architecture through an Analysis of Overseas Cases (해외사례 분석을 통한 조경분야에서의 BIM 도입효과 및 실행방법에 관한 연구)

  • Kim, Bok-Young;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제45권1호
    • /
    • pp.52-62
    • /
    • 2017
  • Overseas landscape practices have already benefited from the awareness of BIM while landscape-related organizations are encouraging its use and the number of landscape projects using BIM is increasing. However, since BIM has not yet been introduced in the domestic field, this study investigated and analyzed overseas landscape projects and discussed the positive effects and implementation of BIM. For this purpose, landscape projects were selected to show three effects of BIM: improvement of design work efficiency, building of a platform for cooperation, and performance of topography design. These three projects were analyzed across four aspects of implementation methods: landscape information, 3D modeling, interoperability, and visualization uses of BIM. First, in terms of landscape information, a variety of building information was constructed in the form of 3D libraries or 2D CAD format from detailed landscape elements to infrastructure. Second, for 3D modeling, a landscape space including simple terrain and trees was modeled with Revit while elaborate and complex terrain was modeled with Maya, a professional 3D modeling tool. One integrated model was produced by periodically exchanging, reviewing, and finally combining each model from interdisciplinary fields. Third, interoperability of data from different fields was achieved through the unification of file formats, conversion of differing formats, or compliance with information standards. Lastly, visualized 3D models helped coordination among project partners, approval of design, and promotion through public media. Reviewing of the case studies shows that BIM functions as a process to improve work efficiency and interdisciplinary collaboration, rather than simply as a design tool. It has also verified that landscape architects could play an important role in integrated projects using BIM. Just as the introduction of BIM into the architecture, engineering and construction industries saw great benefits and opportunities, BIM should also be introduced to landscape architecture.

A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

  • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
    • Journal of Intelligence and Information Systems
    • /
    • 제25권1호
    • /
    • pp.139-161
    • /
    • 2019
  • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • 제26권4호
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.

A Study on the Determinants of Patent Citation Relationships among Companies : MR-QAP Analysis (기업 간 특허인용 관계 결정요인에 관한 연구 : MR-QAP분석)

  • Park, Jun Hyung;Kwahk, Kee-Young;Han, Heejun;Kim, Yunjeong
    • Journal of Intelligence and Information Systems
    • /
    • 제19권4호
    • /
    • pp.21-37
    • /
    • 2013
  • Recently, as the advent of the knowledge-based society, there are more people getting interested in the intellectual property. Especially, the ICT companies leading the high-tech industry are working hard to strive for systematic management of intellectual property. As we know, the patent information represents the intellectual capital of the company. Also now the quantitative analysis on the continuously accumulated patent information becomes possible. The analysis at various levels becomes also possible by utilizing the patent information, ranging from the patent level to the enterprise level, industrial level and country level. Through the patent information, we can identify the technology status and analyze the impact of the performance. We are also able to find out the flow of the knowledge through the network analysis. By that, we can not only identify the changes in technology, but also predict the direction of the future research. In the field using the network analysis there are two important analyses which utilize the patent citation information; citation indicator analysis utilizing the frequency of the citation and network analysis based on the citation relationships. Furthermore, this study analyzes whether there are any impacts between the size of the company and patent citation relationships. 74 S&P 500 registered companies that provide IT and communication services are selected for this study. In order to determine the relationship of patent citation between the companies, the patent citation in 2009 and 2010 is collected and sociomatrices which show the patent citation relationship between the companies are created. In addition, the companies' total assets are collected as an index of company size. The distance between companies is defined as the absolute value of the difference between the total assets. And simple differences are considered to be described as the hierarchy of the company. The QAP Correlation analysis and MR-QAP analysis is carried out by using the distance and hierarchy between companies, and also the sociomatrices that shows the patent citation in 2009 and 2010. Through the result of QAP Correlation analysis, the patent citation relationship between companies in the 2009's company's patent citation network and the 2010's company's patent citation network shows the highest correlation. In addition, positive correlation is shown in the patent citation relationships between companies and the distance between companies. This is because the patent citation relationship is increased when there is a difference of size between companies. Not only that, negative correlation is found through the analysis using the patent citation relationship between companies and the hierarchy between companies. Relatively it is indicated that there is a high evaluation about the patent of the higher tier companies influenced toward the lower tier companies. MR-QAP analysis is carried out as follow. The sociomatrix that is generated by using the year 2010 patent citation relationship is used as the dependent variable. Additionally the 2009's company's patent citation network and the distance and hierarchy networks between the companies are used as the independent variables. This study performed MR-QAP analysis to find the main factors influencing the patent citation relationship between the companies in 2010. The analysis results show that all independent variables have positively influenced the 2010's patent citation relationship between the companies. In particular, the 2009's patent citation relationship between the companies has the most significant impact on the 2010's, which means that there is consecutiveness regarding the patent citation relationships. Through the result of QAP correlation analysis and MR-QAP analysis, the patent citation relationship between companies is affected by the size of the companies. But the most significant impact is the patent citation relationships that had been done in the past. The reason why we need to maintain the patent citation relationship between companies is it might be important in the use of strategic aspect of the companies to look into relationships to share intellectual property between each other, also seen as an important auxiliary of the partner companies to cooperate with.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Establishment of the Suitability Class in Ginseng Cultivated Lands (인삼 재배 적지 기준 설정 연구)

  • Hyeon, Geun-Soo;Kim, Seong-Min;Song, Kwan-Cheol;Yeon, Byeong-Yeol;Hyun, Dong-Yun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제42권6호
    • /
    • pp.430-438
    • /
    • 2009
  • An attempt was made to establish the suitability classes of lands for the cultivation of ginseng(Panax ginseng C. A. Meyer). For this study, the relationships between various soil characteristics and ginseng yields were investigated on altogether 450 ginseng fields (150 sites in paddy and 300 sites in upland), across Kangwon, Kyunggi, Chungbug, Chungnam, Jonbug and Kyungbug Provinces, where ginseng is widely cultivated. In the paddy fields, most influential properties of soil on the ginseng yields was found to be the drainage class. Texture of surface soil and available soil depths affected the ginseng yields to some extents. However, the topography, slope, and the gravel content were found not to affect the ginseng yields. In the uplands, the texture of surface soil was most influential and the topography, slope, and occurrence depth of hard-pan were least influential on the performance of the crop. Making use of multiple regression, by SAS, the contribution of soil morphological and physical properties such as, topography, surface soil texture, drainage class, slope, available soil depth, gravel content, and appearance depth of hard-pan, for the suitability of land for ginseng cultivation was analyzed. Based on the results of above analysis, adding up all of the suitability indices, land suitability classes for ginseng cultivation were proposed. On top of this, taking the weather conditions into consideration, suitability of land for ginseng cultivation was established in paddy field and in uplands. As an example, maps showing the distribution of suitable land for ginseng cultivation were drawn, adopting the land suitability classes obtained through current study, soil map, climate map, and GIS information, for Eumsung County, Chungbug Province. Making use of the information on the land suitability for ginseng cultivation obtained from current study, the suitability of lands currently under cultivation of ginseng was investigated. The results indicate that 74.0% of them in paddy field and 88.3% in upland are "highly suitable" and "suitable".

A Study on Relationship of Salesperson's, Relationship Beliefs, Negative Emotion Regulation Strategies, and Prosocial Behavior to Customer (판매원의 관계신념, 부정적 감정 조절전략, 그리고 친소비자행동의 관계에 관한 연구)

  • Kim, Sang-Hee
    • Management & Information Systems Review
    • /
    • 제34권5호
    • /
    • pp.191-212
    • /
    • 2015
  • Unlike the existing researches related to salespersons, this study intends to place the focus on salespersons' psychological characteristic as an element affecting their selling behavior. This is because employees' psychological characteristic is very likely to affect their devotion and commitment to relationship with customers and long-term production by a company. In particular, salespersons are likely to get a feeling of fatigue or loss, or make a cynical or cold response to customers because of frequent interaction with them, and to show emotional indifference in an attempt to keep their distance from customers. But the likelihood can vary depending on salespersons' own psychological characteristic; in particular, the occurrence of these phenomena is very likely to vary significantly depending on relationship belief in interpersonal relations. In the field of psychology, under way are researches related to personal psychological characteristics to improve the quality of interpersonal relations and to maximize personal performance and enhance situational adaptability during this process; it is a personal relationship belief that is recently mentioned as such a psychological characteristic. For salespersons having frequent interaction with customers, particularly, relationship belief can be a very important element in forming relations with customers. So this study aims at determining how salespersons' relationship belief affects negative emotion regulation strategies and prosocial behavior to customer. As a result, salespersons' relationship belief was found to have effects on their negative emotion regulation strategies and prosocial behavior to customer. Negative emotion regulation strategies was found to have effects on prosocial behavior. Salespersons with intimate relationship belief try to use active regulation, support-seeking regulation and salespersons with controlling relationship belief try to use avoidant/distractive regulation. Intimate relationship belief was found to have more prosocial behavior, controlling relationship belief was found to have less prosocial behavior to customer. salespersons' negative emotion regulation strategies was found to have effects on their prosocial behavior to customer. Active, support-seeking influence prosocial behavior to customer positively, avoidant/distractive regulation influence prosocial behavior to customer negatively.

  • PDF

A Study on the Necessity of Verification and Certification System of Inspection and Diagnostic Equipment for Infrastructure using Advanced Technologies (첨단 시설물 점검 및 진단장비 검·인증제도 도입 필요성에 대한 연구)

  • Hong, Sung-Ho;Kim, Jung-Gon;Cho, Jae-Young;Kim, Twae-Hwan
    • Journal of the Society of Disaster Information
    • /
    • 제16권1호
    • /
    • pp.163-177
    • /
    • 2020
  • Purpose: While it is very important to maintain facilities recently, the introduction and its application of high technology in the facility maintenance industry has increased. It is necessary for high technology to secure reliability through the verification and certification system of diagnostic equipment to have an effective impact in the field, but there is difference between the industry's perspective and realistic level of technology apart from social demand for the system of the system. This paper dealt with the introduction of a verification and certification system for rational facility diagnostic equipment with the opinion survey on managers about the current situation. Method: Survey is carried out targeting managers in the maintenance and construction regarding the necessity and urgency of introducing a verification and certification system to promote the introduction and its application of high technology of diagnostic equipment and facility inspection. Also, the introduction to a verification and certification system was reviewed for advanced facility diagnostic equipment through foreign research about similar systems and comparative analysis of similar systems related to the certification of 21 domestic equipment. Result: It showed that, regarding the application of high technology, it is necessary for most managers to introduce high technology such as drones, robots, etc., in the maintenance industry, and when high technology is introduced, it will have a considerable effect in the field. On the other hand, the current technology level in Korea is relatively low, so it turned out to take a certain amount of time for the application of technology. Also, it was found that the management of reliable facility diagnostic equipment will be possible through the introduction of the verification and certification system for facility diagnosis equipment. Meanwhile, the survey is conducted on similar systems about foreign and domestic diagnosis and measuring equipment, etc., but there is no system to verify and certify equipment applied with high technology directly to facility diagnosis maintenance. However, because Japan has a system of verifying the performance of diagnostic equipment and South Korea has 21 similar inspection and diagnostic equipment certification systems among 186 certification systems, it is considered to be possible to design systems which utilize them. Conclusion: According to the managers' opinion, it seems that the introduction of the system supporting the application of 4th industrial technology for the equipment and the use of the equipment with high reliability has sufficient validity. However, because our high technology level is undervalued compared to the urgency, the system for checking high technology facilities and certifying diagnostic equipment should be to be implemented in form of escalation considering technical use and verification level. Apart from the introduction of the verification and certification system, it is necessary for special investment, support and efforts to promote advanced facility diagnostic equipment.

The Method for Real-time Complex Event Detection of Unstructured Big data (비정형 빅데이터의 실시간 복합 이벤트 탐지를 위한 기법)

  • Lee, Jun Heui;Baek, Sung Ha;Lee, Soon Jo;Bae, Hae Young
    • Spatial Information Research
    • /
    • 제20권5호
    • /
    • pp.99-109
    • /
    • 2012
  • Recently, due to the growth of social media and spread of smart-phone, the amount of data has considerably increased by full use of SNS (Social Network Service). According to it, the Big Data concept is come up and many researchers are seeking solutions to make the best use of big data. To maximize the creative value of the big data held by many companies, it is required to combine them with existing data. The physical and theoretical storage structures of data sources are so different that a system which can integrate and manage them is needed. In order to process big data, MapReduce is developed as a system which has advantages over processing data fast by distributed processing. However, it is difficult to construct and store a system for all key words. Due to the process of storage and search, it is to some extent difficult to do real-time processing. And it makes extra expenses to process complex event without structure of processing different data. In order to solve this problem, the existing Complex Event Processing System is supposed to be used. When it comes to complex event processing system, it gets data from different sources and combines them with each other to make it possible to do complex event processing that is useful for real-time processing specially in stream data. Nevertheless, unstructured data based on text of SNS and internet articles is managed as text type and there is a need to compare strings every time the query processing should be done. And it results in poor performance. Therefore, we try to make it possible to manage unstructured data and do query process fast in complex event processing system. And we extend the data complex function for giving theoretical schema of string. It is completed by changing the string key word into integer type with filtering which uses keyword set. In addition, by using the Complex Event Processing System and processing stream data at real-time of in-memory, we try to reduce the time of reading the query processing after it is stored in the disk.

A Machine Learning-based Total Production Time Prediction Method for Customized-Manufacturing Companies (주문생산 기업을 위한 기계학습 기반 총생산시간 예측 기법)

  • Park, Do-Myung;Choi, HyungRim;Park, Byung-Kwon
    • Journal of Intelligence and Information Systems
    • /
    • 제27권1호
    • /
    • pp.177-190
    • /
    • 2021
  • Due to the development of the fourth industrial revolution technology, efforts are being made to improve areas that humans cannot handle by utilizing artificial intelligence techniques such as machine learning. Although on-demand production companies also want to reduce corporate risks such as delays in delivery by predicting total production time for orders, they are having difficulty predicting this because the total production time is all different for each order. The Theory of Constraints (TOC) theory was developed to find the least efficient areas to increase order throughput and reduce order total cost, but failed to provide a forecast of total production time. Order production varies from order to order due to various customer needs, so the total production time of individual orders can be measured postmortem, but it is difficult to predict in advance. The total measured production time of existing orders is also different, which has limitations that cannot be used as standard time. As a result, experienced managers rely on persimmons rather than on the use of the system, while inexperienced managers use simple management indicators (e.g., 60 days total production time for raw materials, 90 days total production time for steel plates, etc.). Too fast work instructions based on imperfections or indicators cause congestion, which leads to productivity degradation, and too late leads to increased production costs or failure to meet delivery dates due to emergency processing. Failure to meet the deadline will result in compensation for delayed compensation or adversely affect business and collection sectors. In this study, to address these problems, an entity that operates an order production system seeks to find a machine learning model that estimates the total production time of new orders. It uses orders, production, and process performance for materials used for machine learning. We compared and analyzed OLS, GLM Gamma, Extra Trees, and Random Forest algorithms as the best algorithms for estimating total production time and present the results.