Objective: To evaluate the performance of a convolutional neural network (CNN) model that can automatically detect and classify rib fractures, and output structured reports from computed tomography (CT) images. Materials and Methods: This study included 1079 patients (median age, 55 years; men, 718) from three hospitals, between January 2011 and January 2019, who were divided into a monocentric training set (n = 876; median age, 55 years; men, 582), five multicenter/multiparameter validation sets (n = 173; median age, 59 years; men, 118) with different slice thicknesses and image pixels, and a normal control set (n = 30; median age, 53 years; men, 18). Three classifications (fresh, healing, and old fracture) combined with fracture location (corresponding CT layers) were detected automatically and delivered in a structured report. Precision, recall, and F1-score were selected as metrics to measure the optimum CNN model. Detection/diagnosis time, precision, and sensitivity were employed to compare the diagnostic efficiency of the structured report and that of experienced radiologists. Results: A total of 25054 annotations (fresh fracture, 10089; healing fracture, 10922; old fracture, 4043) were labelled for training (18584) and validation (6470). The detection efficiency was higher for fresh fractures and healing fractures than for old fractures (F1-scores, 0.849, 0.856, 0.770, respectively, p = 0.023 for each), and the robustness of the model was good in the five multicenter/multiparameter validation sets (all mean F1-scores > 0.8 except validation set 5 [512 x 512 pixels; F1-score = 0.757]). The precision of the five radiologists improved from 80.3% to 91.1%, and the sensitivity increased from 62.4% to 86.3% with artificial intelligence-assisted diagnosis. On average, the diagnosis time of the radiologists was reduced by 73.9 seconds. Conclusion: Our CNN model for automatic rib fracture detection could assist radiologists in improving diagnostic efficiency, reducing diagnosis time and radiologists' workload.
정합장처리(Matched Field Processing, MFP)는 음파전달 예측을 기반으로 음원의 거리와 심도를 추정하는 기법이다. 그러나 주파수가 높아지면 음파전달 예측의 부정확성이 증가하여 음원위치 추정이 어렵다. 최근에 제안된 차주파수 정합장처리(Frequency-difference Matched Field Processing, FD-MFP)는 고주파 신호의 자기상관으로부터 추출한 차주파수 곱을 적용함으로써 음속의 오정합 등이 있어도 강인하다고 알려졌다. 본 논문에서는 수평선배열센서에서 차주파수 정합장처리의 성능을 알아보기 위하여, 동해의 환경에서 시뮬레이션을 수행하였다. 장거리 탐지가 가능한 해저면반사(Bottom Bounce, BB)와 수렴구역(Convergence Zone, CZ)이 발생하는 영역에서 위치추정 결과를 분석하였다. 수평선배열센서의 차주파수 정합장처리의 위치추정 정확도는 회절음장과 음속의 오정합에 의해 기존의 정합장처리에 비해 유사하거나 낮아졌다. 시뮬레이션으로부터 차주파수 정합장처리가 기존의 정합장처리보다 오정합에 강인하다는 명확한 결과는 볼 수 없었다.
양손 절단 환자들에게 미용적 목적과 함께 기능적 목적을 갖춘 의수가 필요하며 잔존 근육의 근전도를 이용한 인공 의수에 대한 연구가 활발하나 아직도 비싼 비용의 문제가 있다. 본 연구에서는 저비용의 부품과 소프트웨어인 표면 근전도 센서, 머신러닝 소프트웨어 Edge Impulse, Arduino Nano 33 BLE, 그리고 3D 프린팅을 이용하여 인공의수를 제작하고 성능을 평가하였다. 표면 근전도 센서로 획득하고 Edge Impulse에서 디지털 시그널 프로세싱 과정을 거친 신호들을 이용하여 머신러닝으로 손가락 운동의 종류를 판단하는 훈련을 통해 각 손가락의 굽힘 운동신호를 의수 모델의 손가락들에 전달하였다. 디지털 시그널 프로세싱 조건을 노치 필터 60 Hz, 대역필터 10-300 Hz, 그리고 샘플링 주파수 1,000 Hz로 했을 때, 머신 러닝의 정확도가 82.1%로 가장 높았다. 각 손가락 굴곡 운동간에 혼동될 수 있는 가능성은 약지가 가장 높아서 검지의 운동으로 혼동될 가능성이 44.7 %이었다. 저비용 인공의수의 성공적인 개발을 위해서는 더 많은 연구가 필요하다.
목적 : 노인의 건강한 삶의 방식으로서 라이프스타일에 대한 연구가 증가하고 있다. 라이프스타일이 개개인의 가치와 삶의 태도를 반영하는 개념임에도 불구하고, 아직까지 개인의 어떠한 가치가 라이프스타일을 건강하게 유도하는지 파악한 연구는 부족한 실정이다. 이에 본 연구는 노인의 라이프스타일 유형을 두 가지로 분류하고, 머신러닝을 활용하여 어떠한 개인적 가치가 건강한 라이프스타일에 우선적으로 작용하는지 파악하고자 한다. 연구방법 : 본 연구는 지역사회에 거주하는 55세 이상 중고령 노인 300명을 대상으로 횡단 연구를 수행하였다. 라이프스타일은 Yonsei Lifestyle Profile-Active, Balanced, Connected, Diverse (YLP-ABCD) 응답을 사용하여 잠재프로파일 분석을 통해 유형화하였다. 라이프스타일 유형을 예측하는 개인적 가치는 YLP-V (Values) 응답을 수집하여, 예측성능이 가장 높은 머신러닝 알고리즘을 선정한 후 상대적 중요도를 파악하였다. 결과 : 잠재프로파일 분석 결과, 라이프스타일은 건강한 라이프스타일 실천형(48.87%), 비실천형(51.13%)으로 분류되었다. 실천형에 속한 중고령 노인은 비실천형에 비해 사회관계가 활발한 특성을 나타내었다. 본 연구에 포함된 머신러닝 알고리즘 중 가장 우수한 성능을 보인 모델은 서포트 벡터 머신으로, 정확도 96%, Receiver Operating Characteristic (ROC) 영역 95%로 나타났다. 본 알고리즘을 바탕으로 개인적 가치의 상대적 중요도를 분석한 결과, 건강한 식단, 건강 매체, 여가활동, 건강 제품 및 머신러닝에 주의를 기울일수록, 해당 가치에 따라 중고령 노인은 건강한 라이프스타일을 실천하는 그룹에 속할 가능성이 큰 것으로 나타났다. 결론 : 본 연구는 중고령 노인의 사회적 관계망을 포함한 건강한 라이프스타일을 유도하기 위해, 건강 식단, 매체, 여가, 제품 및 습관에 대한 가치 향상을 중점적으로 다루는 종합적인 프로그램 및 서비스의 필요성을 시사한다.
Hyojun Lee;Soyeong Park;Yebon Kim;Daehoon Son;Yohan Ko;Yun-hwan Lee;Yeong-hun Kwon;Jong-bae Kim
한국컴퓨터정보학회논문지
/
제29권8호
/
pp.11-21
/
2024
본 연구는 가상현실 (Virtual Reality, VR) 기술을 활용하여 골프 스윙의 주요 구간을 식별하고 레이블링 (Labeling) 하는 방법을 탐구한다. 기존 가상현실 기기의 제한점을 해결하기 위해 OpenVR SDK (Software Development Kit)와 SteamVR을 활용하여 다양한 VR 기기에서 운동 데이터를 수집할 수 있는 플랫폼을 개발하였다. 또한, 장단기 메모리 (Long Short-Term Memory) 기반의 시계열 데이터 분석을 통해 운동 동작의 시간적 변화를 식별하고 레이블링하는 반자동 레이블링 기술을 개발하였다. 실험은 소년, 청년, 중년, 장년 세대별 각 20명씩 총 80명의 참가자가 각 5회의 스윙 데이터를 수집하여 총 400개의 운동 데이터 세트를 구축하였다. 제안하는 기술은 골프 스윙의 7가지 주요 구간에 대해 모든 연령대에서 일관되게 높은 정확도(0.94 이상)와 F1 점수(0.95 이상)를 달성하였다. 이 기술은 운동 데이터를 세분화하고 구간별로 운동 능력을 정밀하게 평가할 수 있는 기반을 마련하여, 향후 교육 및 훈련 과정에서 개별 사용자에게 맞춤형 피드백을 제공하는 데 목적이 있다.
최근 온라인 플랫폼에서 구입한 육회를 섭취한 후 식중독 증상을 호소하거나 방울토마토에서 쓴맛이 난다는 리뷰가 뉴스에 등장한 사례가 있다. 이것은 정부 기관, 식품 제조업체나 유통업체가 온라인 플랫폼의 식품 리뷰를 분석하여 식품 위해를 탐지함으로써 소비자 식품안전 위험을 관리할 수 있음을 시사한다. 본 연구는 감성분석과 대형 언어 모델을 활용하여 식품 리뷰를 분석하고, 부정적인 리뷰를 탐지하여 주요 식품안전 위해(식중독, 변질, 화학적 이취, 이물질)를 다중 라벨링하는 분류 모델을 제안한다. 감성 분류 모델에서는 'funnel' 모델이 낮은 False Positive 비율로 부정 리뷰의 오분류 가능성을 최소화하는 데 효과적이었다. 식품안전 위해 다중 라벨링 모델은 GPT-3.5 보다 GPT-4 Turbo를 활용한 것이 재현율과 정확도 모두 96% 이상으로 높은 성능을 보였다. 정부 기관, 식품 제조업체나 유통업체는 제안된 모델을 사용하여 소비자 리뷰를 실시간으로 모니터링하고, 잠재적인 식품안전 문제를 조기에 탐지함으로써 위험을 관리할 수 있다. 이와 같은 시스템은 기업의 브랜드 평판을 보호하고, 소비자 보호를 강화하며, 궁극적으로는 소비자의 건강과 안전을 증진시키는 결과를 가져올 수 있다.
최근 방대한 정보자원 속에서 이용자가 원하는 정보를 제공하기 위해 이용자 정보요구를 파악하여 맞춤형 서비스를 제공하는 큐레이션의 중요성이 커지고 있다. 이에 본 연구는 역사적 가치가 높은 대통령 기록물의 활용 가치 향상을 위해 대통령기록포털의 검색어 로그 분석을 통해 이용자 정보요구를 파악하고자 한다. 또한, 현 대통령기록포털에서 이용자의 정보요구에 부합하는 기록정보서비스를 제공하고 있는지 검색 품질을 파악함으로써 디지털 기록 큐레이션 서비스를 통해 개선할 요소를 제시하고자 한다. 이를 위해 최근 8년간의 검색어 로그를 기반으로 주제 분석, 워드 네트워크 분석을 수행하고, 이용자 요구가 높은 분야를 중심으로 대통령기록포털의 검색 품질을 정확도 관점에서 평가하였으며, 분석 결과를 기반으로 시사점을 도출하였다. 본 연구는 대통령 기록물 대상의 디지털 기록 큐레이션을 위한 사전적 연구로서, 이용자의 구체적인 정보요구를 파악하고 기록관 포털 사이트의 검색 품질을 정량적으로 수치화하여 이용자 만족도 향상을 위한 실효성 있는 연구를 수행하였다는 점에서 의의가 있다.
Massive multiplayer online role playing game (MMORPG)은 국내 게임에서 큰 비중을 차지하는 게임 장르이다. MMORPG에서 유저 이탈 예측은 중요한 과제 중 하나이다. 인게임 결제가 수익 비중이 높기에 유저 잔존율이 서비스 수명 및 수익과 깊이 연관되기 때문이다. 만약, 특정 유저의 이탈을 사전에 예측할 수 있다면 프로모션을 통해 해당 유저의 잔존을 유도할 수 있을 것이다. 따라서, 이탈 예측 문제에서는 예측의 정확도도 중요하지만 이탈의 징후를 얼마나 빠르게 파악할 수 있는지 또한 중요하다. 본 논문에서는 이탈 징후를 조기에 탐지하기 위하여, 유저별 잔존 확률을 일별로 예측하고 이 예측된 확률 값들을 활용하여 유저 이탈 징후를 조기에 파악하는 방법을 제안한다. 이를 위해, 국내 게임사의 유저 로그 데이터로 여러 모형을 학습하고 유저별 잔존 확률을 구하여 잔존 확률의 변화 패턴에 대한 분석을 통해 이탈 가능성이 높은 유저를 조기에 감지할 수 있는 경험적 규칙을 보인다. 최종적으로, 성능 평가 결과를 통해 기존에 접속일을 기반으로 한 규칙보다 제시한 규칙을 이용할 시 이탈 유저를 조기에 감지할 수 있음을 확인한다. 추가적으로, 유저가 이탈하기 전 시점에 게임 접속 중 유저 이탈을 예측하는 방법과 유저의 게임 스타일에 따른 프로모션 방안을 제시한다.
상품 평가 기준은 상품에 대한 속성, 가치 등을 표현한 지표로써 사용자나 기업이 상품을 측정하고 파악할 수 있게 한다. 기업이 자사 제품에 대한 객관적인 평가와 비교를 수행하기 위해서는 적절한 기준을 선정하는 것이 필수적이다. 이때, 평가 기준은 소비자들이 제품을 실제로 구매 및 사용 후 평가할 때 고려하는 제품의 특징을 반영하여야 한다. 그러나 기존에 사용되던 평가 기준은 제품마다 상이한 소비자의 의견을 반영하지 못하고 있다. 기존 연구에서는 소비자 의견이 반영된 온라인 리뷰를 통해 상품의 특징, 주제를 추출하고 이를 평가기준으로 사용했다. 하지만 여전히 상품과 연관성이 낮은 평가 기준이 추출되거나 부적절한 단어가 정제되지 않는 한계가 있다. 본 연구에서는 이를 극복하기 위해 잠재 디리클레 할당(Latent Dirichlet Allocation, LDA) 기법으로 리뷰로부터 평가 기준 후보군을 추출하고 이를 k-최근접 이웃 접근법(k-Nearest Neighbor Approach, k-NN)을 이용해 정제하는 모델을 개발하고 검증했다. 제시하는 방법은 준비 단계와 추출 단계로 이루어진다. 준비 단계에서는 워드임베딩(Word Embedding) 모델과 평가 기준 후보군을 정제하기 위한 k-NN 분류기를 생성한다. 추출 단계에서는 k-NN 분류기와 언급 비율을 이용해 평가 기준 후보군을 정제하고 최종 결과를 도출한다. 제안 모델의 성능 평가를 위해 명사 빈도 추출 모델, LDA 빈도 추출 모델, 실제 전자상거래 사이트가 제공하는 평가 기준을 세 비교 모델로 선정했다. 세 모델과의 비교를 위해 설문을 진행하고 점수화하여 결과를 검정했다. 30번의 검정 결과 26번의 결과에서 제안 모델이 우수함을 확인했다. 본 연구의 제안 모델은 전자상거래 사이트에서 리뷰 특성을 반영한 상품군 별 차원을 도출하는데 활용될 수 있고 이를 기초로 인사이트 발굴을 위한 리뷰 분석 및 활용에 크게 기여할 것이다.
색도는 고추의 품질을 결정하는 중요한 요인으로, 색도 측정을 위해 high-performance liquid chromatography(HPLC), thin layer chromatography(TLC), ASTA-20 방법 등이 활용되고 있다. 특히 ASTA-20 방법은 간단하고 정확하게 다수의 시료에 대한 색도 분석을 수행할 수 있다는 장점 덕분에 주로 사용된다. 하지만 전처리 과정에 시간이 많이 소요되고 아세톤과 같은 폐시약이 발생한다. 따라서 본 연구에서는 ASTA-20 방법을 대체하기 위하여 Vis/NIR 초분광 분석법을 활용한 빠른 색도 분석법을 개발하고자 하였다. ASTA-20 방법과 Vis/NIR 초분광 분석법의 상관관계를 분석하기 위하여 총 488점 고춧가루의 색도를 두 가지 방법으로 측정하였다. 이후 무작위로 선발한 366개의 시료를 이용하여 Vis/NIR 초분광 분석법으로 측정한 값으로부터 ASTA 값을 예측하는 부분최소자승법(PLS) 모델을 확립하였다. 모델 개발에 활용하지 않은 122개 시료의 ASTA 값을 PLS 모델을 이용하여 예측하고, ASTA-20 방법으로 측정한 값과 비교해본 결과, 매우 유의성 있는 상관관계($R^2=0.88$)를 나타내 Vis/NIR 초분광 분석법의 신뢰도를 확인할 수 있었다. 따라서 본 연구에서 개발한 간편하고 빠른 ASTA 값 측정 방법은 전처리 단계를 요구하지 않고, 30분 이내에 100개 시료에 대한 분석을 수행할 수 있어 다수의 고춧가루 색도를 빠르게 측정하는데 유용하게 사용될 것으로 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.