• Title/Summary/Keyword: Performance Improvement

Search Result 12,359, Processing Time 0.038 seconds

Theoretical Examination of the Pay-for-Performance Practice: Case of a Shipbuilding Company

  • Jun, Gyung-Ju
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.471-480
    • /
    • 2013
  • Pay-for-performance plans are some of widely used human resource practices in many firms, including shipbuilding, for productivity and motivational improvement purposes. Such plans play an important role in industries that are highly labor-intensive, and where effective management of human resources is critical to business operations, such as the shipbuilding industry. Those practices can have large impact on employee performance and ultimately company competitiveness. Research studies that show how such incentive plans improve productivity and reported pattern of adoption by firms have spurred the use and adoption in many firms. However, there are also researchers who point out that there are negative consequences to using incentive plans. Therefore it is important for companies to carefully consider the practices they use. In this paper, I discuss research findings that support the practices and critical viewpoints related to pay-for-performance plans. Research findings from Korean literature are, then, discussed. The shipbuilding industry is chosen because proper human resource management is critical in reducing turnover and increasing employee satisfaction. Through a shipbuilding company case, problems related to using pay-for-performance incentive plans and how they affect work-related issues of employee morale, cooperation, and teamwork will be discussed. While positive aspects have been emphasized to drive greater adoption among firms, the resulting consequences of the pay plans need to be seriously considered and improvements upon the plans made by firms. Improvement suggestions are discussed in the conclusions and implications.

The Characteristic and Improvement of Flexibility Performance Item evaluated by "Housing Performance Grading System" (주택성능등급 가변성 세부성능 항목의 특성 및 개선방안)

  • Lee, Sung-Ok
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.29-35
    • /
    • 2011
  • This study aims to suggest improvement plans and explain about the current situation for facilitating Long-life housing, based on the results on flexibility items among 27 items consisting the "Housing Performance Grading System". From the 9th of January, 2006 to the month of July in 2011, study has analyzed evaluation results on 216 different types for each grade and reviewed evaluation criteria and methods. Current evaluation criteria applies quantitative analysis, by calculating in percentage how much bearing walls and columns, which hinder flexibility, take up space in the household. The evaluation rate for each household was assessed in relation to its structural system, and a higher grade was given to column-typed structures. In addition, to facilitate long-life housing, this study extracted harmful factors, expanding the range of evaluation. The first step was to evaluate structure, which is the basic element. The second step can to evaluate the probability of applying resources in response to the changes of structural systems. As The third step, Flexibility item will evaluate the probability of moving the water-using area, suggesting gradual approach. Thus, through evaluations of flexibility items, the study aims to improve the quality of life in household, by avoiding uniform structures and acquiring more freedom for space designs.

Numerical study on the Performance Improvement of the Sirocco Fan in a Range Hood (레인지 후드용 시로코 홴의 성능 향상을 위한 연구)

  • Park, Sang-Tae;Choi, Young-Seok;Park, Moon-Soo;Kim, Cheol-Ho;Kwon, Oh-Myoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.572-577
    • /
    • 2004
  • This paper presents numerical study on the performance improvement of the sirocco fan in a range hood. The performance of sirocco fan means a higher flowrate, a higher static pressure and a lower required motor power in a fixed geometry constraint. Various impeller geometric parameters, such as blade profile, blade diameter, blade thickness profile and blade exit angle, were investigated by numerically and the results were compared with each other to know the effects on the performance. In this approach, the volute geometry were fixed with the original shape. The numerical results show that the blade profile with airfoil shape and small exit blade thickness increases the performance. The blade exit angle shows optimum angle within a varied range. The efficiency of the optimized exit angle was about $10\%$ higher than the base blade exit angle and the static pressure was about $28\%$ higher at the flow coefficient 0.22.

  • PDF

A Study on the Improvement of Human Operators' Performance in Detection of External Defects in Visual Inspection (품질 검사자의 외관검사 검출력 향상방안에 관한 연구)

  • Han, Sung-Jae;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.4
    • /
    • pp.67-74
    • /
    • 2019
  • Visual inspection is regarded as one of the critical activities for quality control in a manufacturing company. it is thus important to improve the performance of detecting a defective part or product. There are three probable working modes for visual inspection: fully automatic (by automatic machines), fully manual (by human operators), and semi-automatic (by collaboration between human operators and automatic machines). Most of the current studies on visual inspection have been focused on the improvement of automatic detection performance by developing a better automatic machine using computer vision technologies. However, there are still a range of situations where human operators should conduct visual inspection with/without automatic machines. In this situation, human operators'performance of visual inspection is significant to the successful quality control. However, visual inspection of components assembled into a mobile camera module belongs to those situations. This study aims to investigate human performance issues in visual inspection of the components, paying more attention to human errors. For this, Abstraction Hierarchy-based work domain modeling method was applied to examine a range of direct or indirect factors related to human errors and their relationships in the visual inspection of the components. Although this study was conducted in the context of manufacturing mobile camera modules, the proposed method would be easily generalized into other industries.

Flow Control in the Vacuum-Ejector System (진공 이젝터 시스템의 유동 컨트롤)

  • Lijo, Vincent;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.321-325
    • /
    • 2010
  • Supersonic ejectors are simple mechanical components, which generally perform mixing and/or recompression of two fluid streams. Ejectors have found many applications in engineering. In aerospace engineering, they are used for altitude testing of a propulsion system by reducing the pressure of a test chamber. It is composed of three major sections: a vacuum test chamber, a propulsive nozzle, and a supersonic exhaust diffuser. This paper aims at the improvement of ejector-diffuser performance by focusing attention on reducing exhaust back flow into the test chamber, since alteration of the backflow or recirculation pattern appears as one of the potential means of significantly improving low supersonic ejector-diffuser performance. The simplest backflow-reduction device was an orifice plate at the duct inlet, which would pass the jet and entrained fluid but impede the movement of fluid upstream along the wall. Results clearly showed that the performance of ejector-diffuser system was improved for certain a range of system pressure ratios, whereas the orifice plate was detrimental to the ejector performance for higher pressure ratios. It is also found that there is no change in the performance of diffuser with orifice at its inlet, in terms of its pressure recovery. Hence an appropriately sized orifice system should produce considerable improvement in the ejector-diffuser performance in the intended range of pressure ratios.

  • PDF

Performance Improvement Method of TCP Protocol using Splitting Acknowledgement Packet in Integrated Wired-Wireless Network (유무선 복합망에서 Acknowledgement 패킷의 분할을 통한 프로토콜의 성능향상 기법)

  • Jin, Gyo-Hong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, in order to improve the performance of TCP short traffic application services in wireless Internet environments, the Split-ACKs (SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless lints results in congestion control procedure of TCP being invoked at the source. This causes severe end-to-end Performance degradation of TCP. In this paper, to alleviate the TCP Performance, the SPACK method, split acknowledgement Packets in the base station, is proposed. Using computer simulation, the performance of TCP using SPACK is analysed and shows better performance than traditional TCP Protocol.

Performance Improvement of Air Conditioner Network System using Wireless Sensors Through System Performance Index and Dynamic Power Distribution Control (시스템 성능 지수 및 동적 전력분산 제어를 통한 무선센서를 이용한 에어컨 네트워크 시스템의 성능 개선)

  • Choi, Ho-seek;Kwon, Woo-hyen;Yoon, Byung-keun
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-70
    • /
    • 2019
  • Wireless sensors have been developed in numerous ways for enhancing the convenience of installation, management and maintenance of sensors. Energy harvesting wireless sensors, which can collect energy from the external environment for permanent usage without the need of recharging and exchanging batteries, have been developed and employed used in Internet of Things and at various industrial sites. Energy harvesting wireless sensors are significantly affected by the sensor lifespan to sudden variation in the external environment. Furthermore, reduction in the sensor operating timespan can greatly affect the characteristics of the devices connected through a network. In this paper, a system performance index is proposed that can comprehensively evaluate the lifespan of a solar cell wireless sensor, determine the characteristics of devices connected to the associated network, and recommend dynamic power distribution control for improving the system performance index. Improvement in the system performance index was verified by applying the proposed dynamic power distribution control to an air conditioner network system using a solar cell wireless sensor. Obtained results corroborate that the dynamic power distribution control can extend the lifespan of the incorporated wireless sensor and reduce the air conditioner's power consumption.

A Study on Improvement of Cooling Performance through Vent Structure Optimization of Carbon Ceramic Composite Disc (카본 세라믹 복합재 디스크의 벤트 구조 최적화를 통한 냉각성능 향상에 관한 연구)

  • Shim, J.H.;Shin, U.H.;Lee, J.H.;Jeon, G.B.;Kim, B.C.;Kwack, J.H.;Lim, D.W.;Hyun, E.J.;Jeon, T.H.;Lee, J.M.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Recently, use of composite materials has been increasing for body structures and chassis parts in the car industry because of weight reduction effect and excellent mechanical thermal characteristics. However, application of composite materials in brake system is very difficult because it is hard to obtain enough brake performance due to low heat storage capacity of the composite materials. In this paper, we will present new carbon ceramic composite disc with high flow characteristic. To obtain this characteristic, new vent structures were designed by using ARIZ method and substance-field model analysis. The flow effect of these vent structures on the brake performance was verified by pugh matrix and cooling test. The test results show improvement of cooling performance up to $30^{\circ}C$. Finally, These results will improve brake the reliability of the brake performance for the high performance vehicles and electric vehicles.

Numerical Analysis of Heat Transfer Characteristics of Cooling System for 2.3 kW EV Battery Pack (2.3 kW급 전기자동차 배터리팩용 냉각 장치의 열전달 특성에 관한 해석적 연구)

  • Seong, Dong-Min;Park, Yong-Seok;Sung, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.44-49
    • /
    • 2022
  • The improvement in the battery performance and life using a battery thermal management system directly affects the improvement in the performance, life, and energy efficiency of electric vehicles. Therefore, this study numerically analyzed the heat exchange processes between the coolant inside the cooling plate channel and the heat generated by the battery. The cooling performance was analyzed based on the average temperature, temperature uniformity, and the maximum and minimum temperature differences of the battery. A performance difference existed depending on the coolant inlet temperature but showed the same tendency of cooling performance according to the shape of each plate's channel. Type 1 showed the best results in terms of battery temperature uniformity, which is the most important measure of battery performance; Type 2 showed the best results in terms of the average temperature of the battery; and Type 3 showed the best results in terms of the maximum and minimum temperature differences of the battery compared with that of the other cooling plates.

The Optimization of Ensembles for Bankruptcy Prediction (기업부도 예측 앙상블 모형의 최적화)

  • Myoung Jong Kim;Woo Seob Yun
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • This paper proposes the GMOPTBoost algorithm to improve the performance of the AdaBoost algorithm for bankruptcy prediction in which class imbalance problem is inherent. AdaBoost algorithm has the advantage of providing a robust learning opportunity for misclassified samples. However, there is a limitation in addressing class imbalance problem because the concept of arithmetic mean accuracy is embedded in AdaBoost algorithm. GMOPTBoost can optimize the geometric mean accuracy and effectively solve the category imbalance problem by applying Gaussian gradient descent. The samples are constructed according to the following two phases. First, five class imbalance datasets are constructed to verify the effect of the class imbalance problem on the performance of the prediction model and the performance improvement effect of GMOPTBoost. Second, class balanced data are constituted through data sampling techniques to verify the performance improvement effect of GMOPTBoost. The main results of 30 times of cross-validation analyzes are as follows. First, the class imbalance problem degrades the performance of ensembles. Second, GMOPTBoost contributes to performance improvements of AdaBoost ensembles trained on imbalanced datasets. Third, Data sampling techniques have a positive impact on performance improvement. Finally, GMOPTBoost contributes to significant performance improvement of AdaBoost ensembles trained on balanced datasets.