• Title/Summary/Keyword: Perforated type

Search Result 131, Processing Time 0.026 seconds

Development of Wave Breaking Construction Method for Shore Protection using New Type of Precast Preforated Concrete Block (프리캐스트 유공식 호안블록을 이용한 소파감쇄 신공법개발)

  • 이주호;박광순;박경래;염종윤;배한욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.743-748
    • /
    • 1997
  • In this paper, a new type of precast perforated concrete block is presented to be used in the construction of a step seawall. The overtopping rate of the perforated step seawall is lower than that of the traditional non-perforated step seawall. In construction stage, the cost of total construction of the perforated block is cheaper than that of traditional block. The new type of perforated block may be used as an alternative for shore protection facility.

  • PDF

Hydraulic Model Experiments for Overtopping ]Rate on Step Seawall Using New Type of Perforated Blocks (신형 유공블록을 이용한 계단식 호안의 월파특성 수리실험)

  • 이달수;오영민;이양희
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.269-273
    • /
    • 1996
  • A new type of perforated block is presented to be used in the construction of a step seawall. Two-dimensional hydraulic model test is performed to compare the overtopping rates between the traditional non-perforated step seawall and the perforated step seawall constructed with the new type of perforated blocks. The overtopping rate of the perforated step seawall is lower than that of the traditional non-perforated step seawall. The new type of perforated step seawall may be used as an alternative for water-amenity seawall in the future.

  • PDF

A Study for Improving Thermal Performance According to Variables of Perforated Baffle in Air-type PVT Collector (공기식 PVT 컬렉터에 적용된 타공 베플의 변수에 따른 열 성능 향상을 위한 연구)

  • Yu, Ji-Suk;Kim, Jin-Hee;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.83-91
    • /
    • 2019
  • Photovoltaic thermal (PVT) collectors are devices that simultaneously produce electricity and heat. Research on conventional air-type PVT collector focuses on installing baffles to enhance the collector's thermal performance. However, the baffles have pressure drop inside the collector which degrades the thermal performance. Thus, it is necessary to design baffles to smoothen the flow inside the air-type PVT collector. Alternatively, installing perforated baffles in air-type PVT collectors can reduce the collector weight, but parameters such as the diameter of the perforated holes and the height of the perforated plates should be considered. Therefore, the main aim of this study was to analyze thermal characteristics of each variable of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through NX program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. Therefore, the main aim of this study was to analyze thermal characteristics of each variable (Baffle angle, length, height, pitch, perforated ratio) of perforated baffles installed inside air-type PVT collector. For this purpose, the uniformity of air flow in the collector was compared through CFD program, and the resultant heat gain and thermal efficiency of the air-type PVT collector were compared and analyzed. As a result, the maximum outlet temperature was increased by 1.45 times and the heat gain was increased by 193.8 Wth, depending on the perforated baffle plate, compared to the collector without the baffle. The heat transfer performance showed that the maximum internal velocity was 1.61 times higher and the Reynolds number was 1.06 times higher depending on the parameters of the baffle plate.

A Study on the Absorption Performance of a Perforated Panel type of Resonator (다공패널형 공명기의 흡음성능에 관한 연구)

  • Song, Hwayoung;Yang, Yoonsang;Lee, Donghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.6
    • /
    • pp.224-231
    • /
    • 2016
  • When aiming to reduce the low frequency noise of a subway guest room through sound absorbing treatment methods inside the wall of a tunnel the resonator is often more effective than a porous sound absorbing material. Therefore, the perforated panel type resonator embedded with a perforated panel is proposed. The perforated panel is installed in the neck, which is then extended into the resonator cavity so that it can ensure useful volume. The absorption performance of the perforated panel type of resonator is obtained by acoustic analysis and experiment. The analytical results are in good agreement with the experimental results. In the case of multiple perforated panel type resonators, as the number of perforated panels increase, the 1st resonance frequency is moved to a low frequency band and sound absorption bandwidth is extended on the whole. In order to obtain excellent absorption performance, the impedance matching between multi-panels should be considered. When the perforated panel in the resonator is combined with a porous material, the absorption performance is highly enhanced in the anti-resonance and high frequency range. In case of the resonator inserted with perforated panels of 2, the 2nd resonance frequency is shifted to a low frequency band in proportion to the distance between perforated panels.

An Experimental Study on the Sound Absorption of a Membrane Resonance Type System (박막 공명형 시스템의 흡음성능에 관한 실험적 연구)

  • Yang, Soo-Young;Je, Hyun-Su;Hong, Byung-Kuk;Song, Hwa-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1036-1039
    • /
    • 2004
  • This paper is to experimentally study on the sound absorption of a membrane resonance type system. Membrane resonance type system improves the weak point of a perforated plate system. The experimental results for a membrane resonance type system are explained in comparison with those of a perforated plate system. From the experimental results, it is found that there is an influence of the membrane on the absorption performance. The sound absorbing performances of a membrane resonance system are similar to those of a perforated plate system.

  • PDF

Comparative Study on the Subsurface Drainage Discharge Performance by the Type of Non-Excavation Subsurface Drainage Culvert (비굴착 지하배수암거 형태별 지하배수 성능 비교분석)

  • Kim, Hyuntai;Ryu, Jeonyong;Jung, Kiyuol;Seo, Donguk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.73-81
    • /
    • 2018
  • In this study, subsurface discharge performance has been studied through theoretical seepage analysis on four types of culverts that can be installed under the condition of non-excavation, such as (a)perforated pipe(${\Phi}50mm$), (b)perforated pipe+horizontal mat (B50cm) (c)perforated pipe+horizontal mat+vertical gravel(B<10cm), (d)perforated pipe+vertical gravel(B<10cm), and existing typical type (e)perforated pipe with gravel (B40, h=40cm) which can be installed by excavation. The analysis results were as follows. i) Subsurface discharge performance per unit (m) was (a)type 56%, (b) 91%, (c) 96%, (d) 76%, respectively, lower than the value of (e)culvert. ii) However, considering that non-excavation culvert can be installed at a spacing of 5m with the installation cost of the existing excavation culvert at the interval of 10m, it was analyzed that unit subsurface discharge(q) of (a)20.2mm/day(110%), (b)32.8(178%), (c)34.6(188%) (d)27.5(149%) in the four types of non-excavation culvert installed at intervals of 5m under the condition of $ k=10^{-4}cm/s$ was much larger than the amount of (e)type 18.5(100%), existing excavation culvert installed at 10m interval. iii) Through the test construction, peak subsurface drainage discharge($q_p$) was 38.4mm/day, which is larger than the value of design criteria and confirmed that it satisfies the analysis results as well. iv) In particular, it was evaluated that (b)perforated pipe+horizontal mat(B50cm) are low cost, high efficiency subsurface drainage culvert type with sufficient drainage performance(178%).

A Study on the Characteristics of Gasoline Engine Performance Equipped with Perforated Throttle Valve (다공 스로틀밸브 장착 가솔린기관의 성능 특성에 관한 연구)

  • Cho, B.O.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.50-56
    • /
    • 1996
  • In an fuel injection type gasoline engine, atomization of fuel droplet and mixture formation process are very important to understand engine combustion efficiency, and also has influence directly on the decision of engine performance and pollutant emission. In this study, perforated throttle valve instead of solid type throttle valve was developed and equipped to an SPI engine to promote secondary atomization and good droplet-air mixture formation. From the engine performance lest. it was verified that the case of perforated valve kas more advantages in each experimental parameters such as in cylinder gas pressure, mass burnt ratio, fuel consumption rate, and pollutant emission characteristics than that of solid one equipped. No matter what the same perforated valve, there are some distinct results in engine performance characteristics according to the perforate ratio.

  • PDF

Noise Reduction Performance of a Reactive type Silencer with Perforated Panels (다공판이 내장된 반사형 소음기의 소음저감 성능)

  • Lee, Sun-Ki;Lee, Young-Chul;Song, Hwa-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1415-1418
    • /
    • 2007
  • When a high voltage COS fuse becomes a short circuit by the over current, the impulse noise over 150 dB(A) with the strong pulse jet is radiated from the COS fuse of an electric transformer. For the purpose of the impulse noise reduction, in this study, a reactive type silencer with perforated panels are considered. The transmission loss of the silencer are calculated by transfer matrix method. The effect of the porosity, the distance between panels, and the number of perforated panel on the sound transmission loss is investigated and discussed.

  • PDF

An Analytical Study on Prediction of Effective Elastic Constants of Perforated Plate

  • Lee Jae-Kon;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2224-2230
    • /
    • 2005
  • In this study, the validity of the Eshelby-type model for predicting the effective Young's modulus and in-plane Poisson's ratio of the 2-dimensional perforated plate has been investigated in terms of the porosity size and its arrangement. The predicted results by the Eshelby-type model are compared with those by finite element analysis. Whenever the ratio of the porosity size to the specimen size becomes smaller than 0.07, the effective elastic constants predicted by finite element analysis are convergent regardless of the arrangement of the porosities. Under these conditions, the effective Young's moduli of the perforated plate can be predicted within the accuracy of $5\%$ by the Eshelby-type model, which overestimates and underestimates the effective Poisson's ratios by $10\%\;and\;6\%$ for the plates with periodically and non-periodically arranged porosities, respectively.

An Experimental Study on the Transmission Loss of Perforated Tube Mufflers (다공관 소음기의 투과손실에 관한 실험적 연구)

  • 김찬묵;사종성;방극호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.346-352
    • /
    • 2002
  • This paper is the experimental study to estimate the influence of various design parameters on the performance of mufflers with perforated tubes and through-flow partitions. Muffler types considered in the present work include through-flow chamber, through-flow chamber with partition, and cross-flow chamber. The influences of the design parameters on the performance of the mufflers can be outlined as follows. In the case of the through-f]ow type mufflers, increasing the tube thickness and the hole diameter of the perforated tubes does not change the maximum value of the transmission loss but decrease the cutoff frequency. In the case of the through-flow with partitions type mufflers, it is shown that combining a fe w short chambers and long chambers can modify the frequency locations of the resonance frequencies to optimize the performance of the mufflers. For the case of the cross-flow type mufflers, it is shown that the transmission loss of the mufflers is mainly affected by the lower porosity when the porosities are different in both sides of the plug. Overall, it is shown that performance of the through-flow type with partition type mufflers is excellent in the lower frequency region, where the cross-flow type mufflers have better performance in the higher frequency region.

  • PDF