• Title/Summary/Keyword: Perfect Reconstruction

Search Result 67, Processing Time 0.021 seconds

Perfect Reconstruction in Sub-Nyquist Nonuniform Sampling of Signals with Known upper Time-frequency Boundary (비 균일 표본화 신호의 완전 복구에 관한 연구)

  • 이희영;정현권
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.9-12
    • /
    • 2002
  • The problem of sub-Nyquist nonuniform sampling for the perfect reconstruction of signals with time-varying spectral contents is studied. The signals are assumed to have a known instantaneous bandwidth in time-frequency domain. As the function of time, the nonuniform sampling pattern of a given signal, that is, the instantaneous sampling frequency is determined by the observation of instantaneous bandwidth based on time-frequency analysis. The proposed sampling pattern guarantees the perfect reconstruction of nonuniform sampled signals under Nyquist-sampling rate in average.

  • PDF

Sub-Nyquist Nonuniform Sampling and Perfect Reconstruction of Speech Signals (음성신호의 Sub-Nyquist 비균일 표준화 및 완전 복구에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.153-170
    • /
    • 2005
  • The sub-Nyquist nonuniform sampling (SNNS) and the perfect reconstruction (PR) formula are proposed for the development of a systematic method to obtain minimal representation of a speech signal. In the proposed method, the instantaneous sampling frequency (ISF) varies, depending on the least upper boundary of spectral support of a speech signal in time-frequency domain (TFD). The definition of the instantaneous bandwidth (IB), which determines the ISF and is used for generating the set of samples that represent continuous-time signals perfectly, is given. Also, the spectral characteristics of the sampled data generated by the sub-Nyquist nonuniform sampling method is analyzed. The proposed method doesn't generate the redundant samples due to the time-varying property of the instantaneous bandwidth of a speech signal.

  • PDF

Image Reconstruction Using 2D M-ch Perfect Reconstruction Filter Bank with Optimized Adaptive interpolation kernel (최적 적응 보간 커널 기반 2차원 M-채널 완전 복원 Filter Bank를 이용한 이미지 재구성)

  • Kim, Jin-Young;Nam, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.795-798
    • /
    • 2007
  • In this paper, we propose an image reconstruction method utilizing an optimized adaptive interpolation kernel along with a 2D M-channel perfect reconstruction filter bank (M-ch PR-FB) structure. In particular, the proposed approach leads to construction of a sharper image than a direct conversion, still preserving high frequency components of the original image through the subband processing of the 2D M-ch PR-FB. Finally, the image quality of the proposed approach is demonstrated by comparing with those of the direct methods using conventional interpolation kernels.

Design of M-Channel IIR Uniform DFT Filter Banks Using Recursive Digital Filters

  • Dehghani, M.J.;Aravind, R.;Prabhu, K.M.M.
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.345-355
    • /
    • 2003
  • In this paper, we propose a method for designing a class of M-channel, causal, stable, perfect reconstruction, infinite impulse response (IIR), and parallel uniform discrete Fourier transform (DFT) filter banks. It is based on a previously proposed structure by Martinez et al. [1] for IIR digital filter design for sampling rate reduction. The proposed filter bank has a modular structure and is therefore very well suited for VLSI implementation. Moreover, the current structure is more efficient in terms of computational complexity than the most general IIR DFT filter bank, and this results in a reduced computational complexity by more than 50% in both the critically sampled and oversampled cases. In the polyphase oversampled DFT filter bank case, we get flexible stop-band attenuation, which is also taken care of in the proposed algorithm.

  • PDF

Quantization Error of Image Signal by Using QMF (QMF를 이용한 영상 양자화오차)

  • 오영훈;권락범;박남천
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.85-88
    • /
    • 2000
  • Signal splitting and perfect reconstruction in subband coding is based on the assumption that quantization errors are negligible. But if subband signal is quantized, 4 types of errors occurs thus it is not impossible to do perfect reconstruction. These errors are QMF design error, aliasing error, signal error and random error. By using the QMF for subband splitting, the QMF error does not present. and by using the Lloyd-Max quantizer for the quantization and by using an appropriate synthesis filter, all signal dependent errors can be cancelled and the remaining error is random error which is uncorrelated with the original image〔1〕. In this thesis, Lenna and Camera-Man image are devided into 10 subbands by using the D4 and D20 wavelet And the subband signals are quantized by using the Lloyd-Max quantizer and the quantization errors are compared. and evaluated.

  • PDF

Numerical reconstruction of Incoherent Holography using the triangular interferometer (삼각형 간섭계를 이용한 Incoherent 홀로그래피의 수치적 재생에 관한 연구)

  • Bae, You-Seok;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.388-390
    • /
    • 1994
  • We are familiar with the holography in these days. For making holography the coherent sources like LASER are used in many fields. But coherent holography has many problems. Coherent holography needs many instrument for practical use like 3-D TV case. In solving the problem we use the non-coherent source. Nowadays many methods like conoscopic holo graphy using anisotropic crystal, shadow casting and interferometric systems are suggested. In this paper we make the hologram using the triangular interferometric systems. [1],[2],[3],[4]. We explain the afocal and double-afocal system which consists of the triangular interferometric system. The holography made in one point and two point cases is imaged on CCD camera and we handle the image data digitally for the reconstruction efficiently. In reconstructing the hologram the Fraunhofer diffraction theory is used. We adopt the rectangular aperture for the convenience of calculation. In the future we must reconstruct the perfect 3-Dimensional object by optical method. For this, we have many problems like resolution problem. We must solve these problem for perfect reconstruction.

  • PDF

Low-power DWT filter bank design using comb filter and fourth-order polynomial (Comb 필터와 4차 다항식을 사용한 저전력 DWT 필터뱅크 설계)

  • Jang Young-Beom;Lee Won-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2005
  • In this paper a low-power DWT(Discrete Wavelet Transform) design technique is proposed. As basic low-pass filter for analysis bank, comb filter is utilized, and in order to improve frequency response for the comb filter, a fourth order polynomial is also proposed. Another filters are designed by using perfect reconstruction conditions. The lowpass filter coefficients of the analysis filter bank are optimized based on the cost function and perfect reconstruction condition. The number of the multiplications and MSE(Mean Squared Error) performance of the proposed DWT filter bank are compared with those of the JPEG2000 (9, 7) filter bank. It is shown that number of multiplications of the proposed filter bank are saved with 33.3%, and MSE values of the proposed filter bank are also superior to those of the JPEG2000 (9, 7) filter bank.

Block Sparse Signals Recovery Algorithm for Distributed Compressed Sensing Reconstruction

  • Chen, Xingyi;Zhang, Yujie;Qi, Rui
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.410-421
    • /
    • 2019
  • Distributed compressed sensing (DCS) states that we can recover the sparse signals from very few linear measurements. Various studies about DCS have been carried out recently. In many practical applications, there is no prior information except for standard sparsity on signals. The typical example is the sparse signals have block-sparse structures whose non-zero coefficients occurring in clusters, while the cluster pattern is usually unavailable as the prior information. To discuss this issue, a new algorithm, called backtracking-based adaptive orthogonal matching pursuit for block distributed compressed sensing (DCSBBAOMP), is proposed. In contrast to existing block methods which consider the single-channel signal reconstruction, the DCSBBAOMP resorts to the multi-channel signals reconstruction. Moreover, this algorithm is an iterative approach, which consists of forward selection and backward removal stages in each iteration. An advantage of this method is that perfect reconstruction performance can be achieved without prior information on the block-sparsity structure. Numerical experiments are provided to illustrate the desirable performance of the proposed method.

PAPR Reduction for WPM Schemes using Filter Design Schemes (필터 설계 기법을 통한 WPM의 PAPR 감소에 관한 연구)

  • Lee, Kyu Seop;Choi, Gin Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • WPM(Wavelet Packet Modulation) is multicarrier system which is suitable for high speed transmission. The main advantage of using the WPM system is the fact that the flexible system effectively can be realized by the combination of filter coefficient. On the other hand, the major problem of multicarrier system is known to be the high PAPR. In this paper we propose WPM system that has a minimum PAPR by using filter coefficient adjustment method. We first derive the filter coefficient equation and then select the coefficient that has a minimum PAPR. we conduct WPM system by using a selected coefficient and we demonstrate the system performance by using computer simulation.

Uniform DFT Polyphase Filterbank based DF Method for Frequency Hopping Signal Direction Finding (주파수 도약신호 방탐을 위한 균등 디지털주파수변환 폴리페이즈 필터뱅크 기반 방탐기술)

  • Lee, Young-Jin;Kwon, Hyuk-Ja
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.119-128
    • /
    • 2017
  • In this paper, the wideband direction finding algorithm and system design method for short duration signal such as frequency hopping or burst signal is presented. The polyphase filterbank that it is possible for the near perfect reconstruction was used as a pre-processing and in each subband power measurement was performed to determine whether the presence of a signal and finally general direction finding algorithm was performed. In addition, various experiments was performed using Matlab Simulink and collected data from wideband receiver to verification of the proposed algorithm.