• Title/Summary/Keyword: Per-User-based Mobility Management

Search Result 6, Processing Time 0.022 seconds

A Per-User-based Enhanced Distributed Mobility Management Scheme in PMIPv6 Networks (PMIPv6 네트워크에서 사용자 기반의 향상된 분산형 이동성 관리 기법)

  • Kong, Ki-Sik
    • Journal of Digital Contents Society
    • /
    • v.17 no.3
    • /
    • pp.111-118
    • /
    • 2016
  • Proxy mobile IPv6 (PMIPv6), which is a centralized mobility management protocol, are dependent on a local mobility anchor (LMA) to process all control and data traffics. Therefore, it has serious problems such as the tremendous traffic concentration into the core network and the triangle routing. In this paper, therefore, in order to alleviate these drawbacks, we propose a PMIPv6-based enhanced distributed mobility management scheme considering a user's traffic locality. Performance evaluation results indicate that in most cases, except for when a user's mobility rate is relatively very higher than the traffic rate, the proposed scheme shows better performance result than that of PMIPv6. Besides, it is demonstrated that the proposed scheme can be an effective alternative that can distribute the significant loads on the LMA of the core networks to the MAGs of the edge networks.

CEM-PF: Cost-Effective Mobility Management Scheme Based on Pointer Forwarding in Proxy Mobile IPv6 Networks (프록시 모바일 IPv6 네트워크에서 포인터 포워딩에 기반한 비용효과적인 이동성관리 기법)

  • Park, Seung-Yoon;Jeong, Jong-Pil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.81-93
    • /
    • 2012
  • We propose efficient mobility management schemes based on pointer forwarding for Proxy Mobile IPv6 Networks(PMIPv6) with the objective to reduce the overall network traffic incurred by mobility management and packet delivery. The proposed schemes are per-user-based, i.e., the optimal threshold of the forwarding chain length that minimizes the overall network traffic is dynamically determined for each individual mobile user, based on the user's specific mobility and service patterns. We demonstrate that there exists an optimal threshold of the forwarding chain length, given a set of parameters characterizing the specific mobility and service patterns of a mobile user. We also demonstrate that our schemes yield significantly better performance than schemes that apply a static threshold to all mobile users. A comparative analysis shows that our pointer forwarding schemes outperform routing-based mobility management protocols for PMIPv6.

Hierarchical Location Mobility Management using MobilityManagement Points in IP networks

  • Park, Chul Ho;Oh, Sang Yeob
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1069-1074
    • /
    • 2022
  • IP mobility can be handled in different layers of the protocol. Mobile IP has been proposed to handle the mobility of Internet hosts in the network layer. Recently, a new method based on the SIGMA mobility architecture has been proposed to support mobility management with reduced packet loss and latency. The location management structure is not suitable for frequent mobile handover due to the high mobility of the user with this transport layer solution. In this paper, we propose a location management optimization method in a mobile communication network by applying hierarchical location management using MMPs(Mobility Management Points) for transport layer mobility management. Therefore, we propose an efficient hierarchical mobility management structure even between heterogeneous wireless networks using MMPs for the probability that a mobile terminal can change multiple location areas between two messages and calls. The proposed method shows reduction in location update cost and data retrieval cost using MMPs, and as opposed to mobility appearing in time intervals with the minimum cost required to reach 90% of the stabilized cost, the mobility location update search, location It was found that the message processing cost per area was reduced.

A Cross-Layer Based Per-Application Mobility Management Platform (Cross-layer 기반 응용 별 이동성 관리를 위한 플랫폼)

  • Chang, Moon-Jeong;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • An inevitable trend in the next generation wireless network environments is coexistence of different wireless access networks in a complementary, manner. In addition, mobile devices equipped with multiple air interfaces simultaneously executing diverse applications have been emerging, In such network environment, It is required that a solution for mobile users to seamlessly roam between different access networks as well as to satisfy QoS requirements of each application by efficiently utilizing coexisting various wireless access networks. In this paper, therefore, we propose a mobility management platform based on per-application end-to-end mobility management and cross-layer handover controls. Four core functional modules composing the proposed platform for end user devices are defined: Monitoring Agents, Profile Database, Decision Engine, and IP Agent. We show through simulations that the presented platform provides an improved QoS as it selectively utilizes the best available networks.

Traffic Modeling and Analysis for Pedestrians in Picocell Systems Using Random Walk Model (Picocell 시스템의 보행자 통화량 모델링 및 분석)

  • Lee, Ki-Dong;Chang, Kun-Nyeong;Kim, Sehun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.135-144
    • /
    • 2003
  • Traffic performance in a microcellular system is much more affected by cell dwell time and channel holding time in each cell. Cell dwell time of a call is characterized by its mobility pattern, i.e., stochastic changes of moving speed and direction. Cell dwell time provides important information for other analyses on traffic performance such as channel holding time, handover rate, and the average number of handovers per call. In the next generation mobile communication system, the cell size is expected to be much smaller than that of current one to accommodate the increase of user demand and to achieve high bandwidth utilization. As the cell size gets small, traffic performance is much more affected by variable mobility of users, especially by that of pedestrians. In previous work, analytical models are based on simple probability models. They provide sufficient accuracy in a simple second-generation cellular system. However, the role of them is becoming invalid in a picocellular environment where there are rapid change of network traffic conditions and highly random mobility of pedestrians. Unlike in previous work, we propose an improved probability model evolved from so-called Random walk model in order to mathematically formulate variable mobility of pedestrians and analyze the traffic performance. With our model, we can figure out variable characteristics of pedestrian mobility with stochastic correlation. The above-mentioned traffic performance measures are analyzed using our model.

An Adaptive Follow-Me Replication Scheme for Service Profile Management in Virtual Home Environment (가상 홈 환경에서 서비스 프로파일 관리를 위한 적응적 추종 중복 기법)

  • 황진경;권순종;박명순
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.4
    • /
    • pp.545-558
    • /
    • 2003
  • It is expected that per-user customized services are widely used in next generation Personal Communication Network. The ultimate goal for personalized service is the Virtual home Environment (VHE) providing ´same-look-and-feel´ services for the subscriber wherever he roams to. To provide personalized services for each call, per-user service profiles are frequently referenced, so efficient service profile management is essentially required. To realized the VHE, typically two schemes, can be employed; One is Intelligent Network based service control and the other is a full replication scheme that always replicates profile in user´s current zone. The first scheme is referred as Central scheme and th second scheme is the modified replication scheme of IMT-2000, we refer to as Follow-Me Replication Unconditional (FMRU). Since the Central scheme only depends on the service cal rate and the FMRU is merely dependent on the movement rate, it is apparent that FMRU scheme outperforms the Central scheme if the call to mobility ratio (CMR) is large, and vice versa. In this paper, we propose a new service profile replication schemes, Adaptive Follow-Me Replication (AFMR) that determine replication automatically according to the user´s CMR. We compared the performance of the AFMR with the non-adaptive Follow-Me Replication unconditional on Demand (FMRUD) scheme. Performance results indicate that as the CMR of a user changes AFMR adapts well compared to the existing schemes.