• Title/Summary/Keyword: Peptide micelle

Search Result 19, Processing Time 0.024 seconds

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

Tertiary Structure of PreSl(21-47) of Hepatitis B Virus Studied by NMR Spectroscopy

  • Kyeunghee Yu;Cho, Eun-Wie;Shin, Song-Yub;Kim, Kol-Lyong;Kim, Yangmee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.4 no.1
    • /
    • pp.41-49
    • /
    • 2000
  • To design more efficient peptide antagonist against the HBV, preSl(21-47) which carries the HBV receptor binding site for hepatocytes was synthesized and the solution structure of preSl(21-47) was investigated using CD spectroscopy and NMR spectroscopy in membrane-mimicking environments. According to CD spectra, preSl(21-47) has a random structure in aqueous solution, while conformational change was induced by addition of TFE and SDS micelle. Tertiary structures as determined by NMR spectroscopy shows that preSl(21-47) has a very flexible structure even in SDS micelle.

  • PDF

Studies on Skin Permeation with Polymer Micelles and the Cell Penetrating Peptide of Pyrus Serotina Var Stem Extracts

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • The stem extract from Pyrus serotina var has natural antioxidant ability, but the extraction method does not result in a soluble compound in cosmetic formulations. This study investigated the cosmetic efficacy of the Pyrus serotina var stem extract and its epidermis permeation ability when combined with polymer micelles and a cell penetrating peptide. The total concentration of polyphenol compounds was determined to be 103.1644 ± 1.38 mg/g in the ethanol extract and 78.97 ± 1.45 mg/g in the hydrothermal extract. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects were 55.94 ± 0.22% in the ethanol extract at 1,000 mg/L. Superoxide dismutase (SOD) activity rates were 104.05 ± 3.28% in the ethanol extract at 62.5 mg/L. The elastase inhibition rate was 67.21 ± 2.72% in the ethanol extract at 1,000 mg/L. An antimicrobial effect was observed in the Propionibacterium acnes strain. In the epidermal permeability experiment, it was confirmed that formulation of the polymer micelle containing the Pyrus serotina var stem extract and cell penetrating peptide (R6, hexa-D-arginine) showed small particle size and much better skin permeability. The cumulative amount of total Pyrus serotina var stem extract that penetrated to the skin over time increased over 24 hours in three formulations. The three formulations showed 51.61 ㎍/㎠ (Formulation 0), 75.97 ㎍/㎠ (Formulation 1) and 95.23 ㎍/㎠ (Formulation 2) skin penetration, respectively. Therefore, it was confirmed that the ethanol extracts of Pyrus serotina var stem showed good cosmetic efficacy and excellent epidermis permeation ability when combined with a polymer micelle and cell penetrating peptide. Thus, this extract has the potential to be used as a safe and natural cosmetic material in the future.

Cosmetic Efficacy of Red Pinus densiflora and Its Epidermis Penetration with Polymer Micelle and Cell Penetrating Peptide

  • An, Gyu Min;Park, Su In;Shin, Moon Sam
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.10-24
    • /
    • 2019
  • This study aimed to investigate the effects and epidermis penetration system with polymer micelle of Red Pinus densiflora extract. In the antioxidant test, the total concentration of polyphenol compounds was determined to be $137.5163{\pm}7.70mg/g$ in ethanol extract, $133.956{\pm}1.57mg/g$ in hydrothermal extract. The DPPH radical scavenging effects were $95.29{\pm}0.15%$ in ethanol extract at 1,000 mg/L. Elastase inhibition rates were $100.00{\pm}2.85%$ in ethanol extract at 2,000 mg/L. The antimicrobial effect of the ethanol extraction was higher than that of hydrothermal extractions. In the epidermal permeability experiment, it was confirmed that the permeation of the polymer micelle containing the Red Pinus densiflora's ethanol extract and cell penetrating peptides was remarkable. Here, we confirmed that ethanol extract of Red Pinus densiflora displayed excellent the effects in antioxidant test and epidermis penetration system with polymer micelle. As a result, Red Pinus densiflora extract has potential to be used as a safe and natural cosmetic material in the future.

Structure and Antibiotic Activity of a Porcine Myeloid Antibacterial Peptide, PMAP-23 and its Analogues

  • Shin, Song-Yub;Kang, Joo-Hyun;Jang, So-Yun;Kim, Kil-Lyong;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • PMAP-23 is a 23-residue antimicrobial peptide derived from porcine myloid cells. In order to investigate the effects of two Pro residues at positions 12 and 15 of PMAP-23 on antibiotic activity, two analogues in which Ala was substituted for Pro residue at position 12 or 15 were synthesized. $Pro^{12}{\rightarrow}Ala$ (PMAPl) or $Pro^{15}{\rightarrow}Ala$(PMAP2) substitution in PMAP-23 caused a significant reduction on antitumor and phospholipid vesicle-disrupting activities, but did not cause a significant effect on antibacterial activity. PMAP-23 displayed the type I ${\beta}-turn$ structure with a negative ellipticity at near 205 om in SDS micelle, whereas PMAP1 and PMAP2 had a somewhat ${\alpha}-helical$ propensity in TFE solution, as compared to PMAP-23. These results suggest that two Pro residues of positions 12 and 15 in PMAP-23 play important roles in the formation of ${\beta}-turn$ structure on lipid membrane and its ${\beta}-turn$ structure may be essential for antibiotic activity including phospholipid vesicle-disrupting property.

  • PDF

Peptide Micelles for Anti-cancer Drug Delivery in an Intracranial Glioblastoma Animal Model

  • Yi, Na;Lee, Minhyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3030-3034
    • /
    • 2014
  • Bis-chloroethylnitrosourea (BCNU) is currently used as an anti-cancer drug for glioblastoma therapy. In this study, BCNU was loaded into the hydrophobic cores of R3V6 amphiphilic peptide micelles for efficient delivery into brain tumors. The scanning electron microscope (SEM) study showed that the BCNU-loaded R3V6 peptide micelles (R3V6-BCNU) formed spherical micelles. MTT assay showed that R3V6-BCNU more efficiently induced cell death in C6 glioblastoma cells than did BCNU. In the Annexin V assay, R3V6-BCNU more efficiently induced apoptosis than did BCNU alone. Furthermore, the results showed that R3V6 was not toxic to cells. The positive charges of the R3V6 peptide micelles may facilitate the interaction between R3V6-BCNU and the cellular membrane, resulting in an increase in cellular uptake of BCNU. In vivo evaluation with an intracranial glioblastoma rat model showed that R3V6-BCNU more effectively reduced tumor size than BCNU alone. The results suggest that R3V6 peptide micelles may be an efficient carrier of BCNU for glioblastoma therapy.

NMR Spectroscopic Assessment of the Structure and Dynamic Properties of an Amphibian Antimicrobial Peptide (Gaegurin 4) Bound to SDS Micelles

  • Park, Sang-Ho;Son, Woo-Sung;Kim, Yong-Jin;Kwon, Ae-Ran;Lee, Bong-Jin
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.261-269
    • /
    • 2007
  • The structure and dynamics of a 37-residue antimicrobial peptide gaegurin 4 (GGN4) isolated from the skin of the native Korean frog, Rana rugosa, was determined in SDS micelles by NMR spectroscopy. The solution structure of the peptide in SDS micelles was determined from 352 NOE-derived distance constraints and 22 backbone torsion angle constraints. Dynamic properties for the amide backbone were characterized by $^1H-^{15}N $heteronuclear NOE experiments. The structural study revealed two amphipathic helices spanning residues 2-10 and 16-32 and that the helices were connected by a flexible loop. An intraresidue disulfide bridge was formed between residues Cys31 and Cys37 near the C-terminus. The loop region (11-15) connecting the two helices are were slightly more flexible than these helices themselves. From the fact that since there is no contact NOEs between two helices, it is implied that the GGN4 peptide shows an independent motion of both helices which has an angle of about $ 60^{\circ}-120^{\circ}$ from each other.