• Title/Summary/Keyword: Peppermint

Search Result 95, Processing Time 0.045 seconds

Influence of Mentha×piperita L. (Peppermint) Supplementation on Nutrient Digestibility and Energy Metabolism in Lactating Dairy Cows

  • Hosoda, K.;Nishida, T.;Park, W.Y.;Eruden, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1721-1726
    • /
    • 2005
  • The characteristic smell of cow milk was suppressed when herbs were consumed by lactating dairy cows. But it is unclear whether or not peppermint ingestion affects the nutritional and milk production parameters in lactating dairy cows. The objective of this study was to examine the effect of peppermint feeding to lactating dairy cows on nutrient digestibility, energy metabolism, ruminal fermentation and milk production. Eight Holstein cows were given a diet supplemented with or without 5% of dried peppermint per diet on a dry matter basis. The digestion of nutrients from cows fed the diet with peppermint was significantly lower than that of the control group. Energy loss as methane and methane released from cows receiving the peppermint treatment was significantly lower than that in the control cows. Peppermint feeding to cows resulted in the promotion of thermogenesis. However, ruminal fermentation and milk production were not affected by peppermint feeding. In conclusion, peppermint ingestion by lactating dairy cows reduces the nutrient digestibility and methanogenesis, and changes energy metabolism.

Does Inhaled Peppermint Essential Oil Affect Blood Pressure?

  • Park, Sah-Hoon;Kim, Kun-Hee;Park, Jong-Seong
    • Journal of Integrative Natural Science
    • /
    • v.14 no.3
    • /
    • pp.95-98
    • /
    • 2021
  • By far, studies on the effect of oral administration of peppermint essential oil on blood pressure are not consistent, increasing or decreasing. And the effect of inhalation of peppermint essential oil on blood pressure was not reported. This study was designed to clarify the effect of peppermint essential oil inhalation on the blood pressure and autonomic nervous system. Blood pressure and heart rate variability (HRV) as an indicator of autonomic nervous system activity were measured. The systolic and diastolic blood pressure was not changed significantly by inhalation of peppermint essential oil. Standard deviation of normal to normal (SDNN), a parameter of total activity of autonomic nervous system also was not changed significantly. High frequency (HF) power level, an indicator of parasympathetic nervous system activity was not changed by peppermint. These results indicate that action mechanism of peppermint essential oil on blood pressure is different by the method of administration, oral or inhalation.

A comparative evaluation of peppermint oil and lignocaine spray as topical anesthetic agents prior to local anesthesia in children: a randomized clinical trial

  • Harika Petluru;SVSG Nirmala;Sivakumar Nuvvula
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • Background: In pediatric dentistry, fear and anxiety are common among children. Local anesthetics (LA) are widely used to control pain and reduce discomfort in children during dental treatment. Topical anesthetics play a vital role in reducing pain and the unpleasant sensation of a needle puncture in children. Peppermint oil has been extensively used for various diseases. However, its anesthetic properties remain unknown. Peppermint oil, used in mouthwashes, toothpastes, and other topical preparations has analgesic, anesthetic, and antiseptic properties. This study aimed to compare and evaluate pain perception following the topical application of peppermint oil versus lignocaine spray before an intraoral injection in children, aged 8-13 years. Method: Fifty-two children, aged between 8-13 years, who required local anesthesia for dental treatment were divided into two groups of 26 each by simple random sampling (Group 1: 0.2% peppermint oil and Group 2: lignocaine spray). In both groups, physiological measurements (e.g., heart rate) were recorded using pulse oximetry before, during, and after the procedure. Objective pain measurement (Sound Eye Motor (SEM) scale) during administration and subjective measuremeant (Wong-Baker Faces Pain Rating Scale (WBFPRS)) after LA administration were recorded. This was followed by the required treatment of the child. Physiological parameters were compared between the two groups using an independent t-test for intergroup assessment and a paired t-test and repeated-measures ANOVA for intragroup comparisons. The Mann-Whitney U test was used to analyze the pain scores. Results: Intragroup mean heart rates, before, during, and after treatment were statistically significantly different (P < 0.05). However, the intergroup mean pulse rates did not differ significantly between the two groups. The mean WBFPS score in the lignocaine spray group was 4.133 ± 2.06 was statistically different from that of the peppermint oil group (0.933 ± 1.03; P < 0.001*). The mean SEM score was significantly lower in the peppermint oil group than that in the lignocaine spray group (P = 0.006). No negative effects were observed in this study. Conclusion: 0.2% peppermint oil was effective in reducing pain perception.

Effects of Peppermint Oil on Apoptosis of Astrocytes (신경교(神經膠) 성상세포(星狀細胞)의 세포자감사(細胞自減死)에 있어서 박하오일의 효과(效果))

  • Lee Sung-Ryull;Kim Tae-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.2
    • /
    • pp.47-57
    • /
    • 1999
  • Recently, essential oils are used for aromatherapy. Most essential oils are said to be anti-bacterial; some may be anti-viral or anti-fungal. I investigated the effects of peppermint pure essential oil on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTGI. In previous studies, heat shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. We studied the heat shock-induced apoptosis through flow cytometry, DNA electrophoresis, and giemsa staining. Interestingly, these events were inhibited by pretreatment of peppermint pure essential oils in CCF-STTGl cells. Peppermint oil also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. In addition, this Peppermint essential oil inhibited the heat shock-induced activation of caspase-3. These results suggest that peppermint pure essential oils may modulate the apoptosis through the activation of the interleukin-I -converting enzyme-like protease.

  • PDF

Anti-bacterial effects of lavender and peppermint oils on Streptococcus mutans (Streptococcus mutans 대한 Lavender와 Peppermint Oil의 항균효과)

  • Park, Chung Mu;Yoon, Hyun Seo
    • Journal of Korean Academy of Oral Health
    • /
    • v.42 no.4
    • /
    • pp.210-215
    • /
    • 2018
  • Objectives: The main objectives of this study were to verify the antibacterial activity of two essential oils, lavender and peppermint, against dental caries and to review their synergistic effect when used in combination. Our results provide basic data for the evaluation of the use of these two substances towards the prevention and cure of dental caries. Methods: The sample solutions of lavender and peppermint oils were prepared in three different concentrations (30%, 50%, and 70% (v/v)) by diluting them with third-distilled water and Tween 20. Streptococcus mutans was selected as the bacterial species for testing. The disk diffusion method was used to measure the antibacterial activity of the sample solutions. For generating growth curves and measuring the number of clusters of the bacterial, the liquid medium-dilution method was used; the absorbance of the medium was measured at 600 nm after 3, 6, 12 and 24 hours. Results: When the antibacterial activity of the oils was tested via the disk diffusion method, the activity improved with increasing concentrations of all the sample solutions of peppermint, lavender, and the blend, but there was no significant difference between them with respect to the type of oil. In the growth curves of S. mutans, growth inhibition was observed after 12 hours. The inhibitory effect of 30% lavender oil on growth was 64.9% and 80.1% after 12 and 24 hours of treatment, respectively whereas that of peppermint oil was 71.3% and 80.1% after 12 and 24 hours of treatment, respectively. The inhibitory effect of the blended oil was 71.9% and 81.0% after 12 and 24 hours of treatment, respectively. Conclusions: Further research is still required in order to determine the efficacy of lavender and peppermint oils, as well as other essential oils, for wider use in preventing dental caries.

Variation of Essential Oil Content and Its Composition during Callus Subculture of Peppermint (Mentha piperita) (페퍼민트 캘러스 계대배양 기간 중 정유함량과 성분변화)

  • Park, Jung-Suk;Park, Woo-Tae;Kim, Haeng-Hoon;Park, Sang-Un
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.373-376
    • /
    • 2010
  • Peppermint (Mentha piperita L.) belongs to a member of the mint family (Lamiaceae) and is widely used in food, cosmetics and medicines. This study was carried to investigate the variation of essential oil content and its composition during callus subculture of M. piperita. For callus induction from the leaf explant of peppermint, the basal medium was supplemented with various concentrations of 2, 4-D. The best callus induction rate (93%) of M. piperita. was obtained in MS medium containing 2 mg/l 2, 4-D. The induced peppermint callus maintained on Lin-Staba medium were studied during a period of 20th subcultures for the stability of essential oil production. Growth rates of peppermint callus increased during prolonged subculture. However, there was a progressive decrease of essential oil content and unstability of monoterpene productions when callus cultures were serially subcultured.

Antimicrobial Effect of Mentha piperita (Peppermint) Oil against Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella Enteritidis in Various Dairy Foods: Preliminary Study

  • Lim, Hyun-Woo;Kim, Dong-Hyeon;Kim, Se-Hyung;Lee, Jun-Man;Chon, Jung-Whan;Song, Kwang-Young;Bae, Dongryeoul;Kim, Jinhyun;Kim, Hyunsook;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.146-154
    • /
    • 2018
  • There are more than 25 species of Mentha plants, which are aromatic perennial herbs. Currently, these species are being widely used with great interest because of various clinical findings regarding their health benefits. This is due to the abundance of volatile compounds that could expedite environmental interactions such as protection against herbivores, parasites, pathogens, and so on. Therefore, in this study, the antimicrobial effect of Mentha piperita (peppermint) oil on Bacillus cereus, Staphylococcus aureus, Cronobacter sakazakii, and Salmonella Enteritidis were investigated using the spot-on-lawn method. The results show that Mentha piperita (peppermint) oil exhibited antimicrobial activities against Bacillus cereus, Staphylococcus aureus, and Cronobacter sakazakii; however, it did not inhibit the growth of Salmonella Enteritidis. This shows that the antimicrobial effect of Mentha piperita (peppermint) oil is effective against both Gram-positive and Gram-negative bacteria. Hence, in the present study, Mentha piperita (peppermint) oil was shown to have strong antimicrobial activities; it could be used as a potential food additive for improving the quality of various milk-based products due to its various bioactive properties. Future studies should be conducted for manufacturing functional dairy products with the addition of peppermint oil to prevent and/or alleviate specific diseases.

Peppermint Oil Promotes Hair Growth without Toxic Signs

  • Oh, Ji Young;Park, Min Ah;Kim, Young Chul
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.297-304
    • /
    • 2014
  • Peppermint (Mentha piperita) is a plant native to Europe and has been widely used as a carminative and gastric stimulant worldwide. This plant also has been used in cosmetic formulations as a fragrance component and skin conditioning agent. This study investigated the effect of peppermint oil on hair growth in C57BL/6 mice. The animals were randomized into 4 groups based on different topical applications: saline (SA), jojoba oil (JO), 3% minoxidil (MXD), and 3% peppermint oil (PEO). The hair growth effects of the 4-week topical applications were evaluated in terms of hair growth, histological analysis, enzymatic activity of alkaline phosphatase (ALP), and gene expression of insulin-like growth factor-1 (IGF-1), known bio-markers for the enhanced hair growth. Of the 4 experimental groups, PEO group showed the most prominent hair growth effects; a significant increase in dermal thickness, follicle number, and follicle depth. ALP activity and IGF-1 expression also significantly increased in PEO group. Body weight gain and food efficiency were not significantly different between groups. These results suggest that PEO induces a rapid anagen stage and could be used for a practical agent for hair growth without change of body weight gain and food efficiency.

Repellent Effects of Peppermint Oil Against Pochazia shantungensis (Hemiptera: Ricaniidae) (박하유의 갈색날개매미충(Pochazia shantungensis)에 대한 기피효과)

  • Ryu, Tae Hee;Kwon, Hye Ri;Yu, Yong Man;Youn, Young Nam
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.223-233
    • /
    • 2016
  • In order to identify a new control measure for a sporadic insect pest, Pochazia shantungensis, 23 types of essential oils were screened for their repellent effects, with an olfactory test using a Y-tube olfactometer. Results indicated that 21 essential oils, except lemongrass oil and peppermint oil, did not show repellent activity against P. shantungensis. The repellent effect of peppermint oil was over 80%. When 0.1, 0.5, and $1{\mu}l$ of peppermint oil were used, the rate of repelling of P. shantungensis gradually increased, and was as high as 76.5% when $10{\mu}l$ was used. The main components of peppermint oil were 1,8-cineole, iso-menthyl acetate, menthone, and menthol, at 4.7, 8.0, 23.8 and 53.7%, respectively. When the three main components were mixed using a Y-tube olfactometer, a strong repellent effect (76.2%) was observed when $5{\mu}l$ was used. Peppermint oil showed a repellent and ovipositional repellent effect against P. shantungensis in the field. However, this activity persists only for a short period, and high concentrations can lead to phytotoxicity. Therefore, it is necessary to develop ideal formulations.