• 제목/요약/키워드: Pentacene$C_{60}$

검색결과 9건 처리시간 0.029초

$C_{60}$(buckminsterfullurene) 홀주입층을 적용한 유기박막트랜지스터의 성능향상 (Performance enhancement of Organic Thin Film Transistor using $C_{60}$ hole injection layer)

  • 이문석
    • 대한전자공학회논문지SD
    • /
    • 제45권5호
    • /
    • pp.19-25
    • /
    • 2008
  • 본 연구에서는 유기반도체인 펜타센과 소스-드레인 금속전극사이에 $C_{60}$을 홀주입층으로 적용한 유기박막트랜지스터를 제작하여 $C_{60}$을 삽입하지 않은 소자와의 전기적특성을 비교하였다. $C_{60}/Au$ 이중전극을 사용한 소자의 경우 Au단일전극을 사용한 소자와 비교하였을 때 전하이동도는 0.298 $cm^2/V{\cdot}s$에서 0.452 $cm^2/V{\cdot}s$ 문턱전압의 경우 -13.3V에서 -10.8V로 향상되었으며, contact resistance를 추출하여 비교하였을 경우 감소함을 확인할 수 있었다. 이러한 성능의 향상은 $C_{60}$을 Au와 pentacene 사이에 삽입하였을 경우 Au-pentacene 간의 원하지 않는 화학적 반응을 막아줌으로써 홀 주입장벽를 감소시켜 홀 주입이 향상되었기 때문이다. 또한 Al을 전극으로 적용한 OTFT도 제작하였다. 기존에 Al은 OTFT에 단일전극으로 사용하였을 경우 둘간의 높은 홀 주입장벽으로 인해 채널이 거의 형성되지 않았으나, $C_{60}/Al$ 이중전극을 사용한 소자의 경우 전하이동도와 전류점멸비은 0.165 $cm^2/V{\cdot}s$, $1.4{\times}10^4$ 으로써 Al를 단일전극으로 사용하는 소자의 전기적 특성에 비해 크게 향상되어진 소자를 제작할 수 있었다. 이는 $C_{60}$과 Al이 접합시에 interface dipole의 형성으로 Al의 vacuum energy level이 변화로 인한 Al의 work function이 증가되어 pentacene과 Al간의 hole injection barrier가 감소되었기 때문이다.

Soft X-ray Spectroscopy of ClAlPc/Pentacene/ITO Interfaces: Role of ClAlPc on Energetic Band Alignment

  • 김민수;허나리;이상호;조상완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.190.1-190.1
    • /
    • 2014
  • The interfacial electronic structure of a bilayer of chloroaluminum phthalocyanine (ClAlPc) and pentacene grown on indium tin oxide (ITO) has been studied using synchrotron radiation-excited photoelectron spectroscopy. The energy difference between the highest occupied molecular orbital (HOMO) level of the pentacene layer and the lowest unoccupied molecular orbital (LUMO) level of the ClAlPc layer (EDHOMO - EALUMO) was determined and compared with that of C60/pentacene bilayers. The EDHOMO - EALUMO of a heterojunction with ClAlPc was found to be 1.4 eV, while that with C60 was 1.0 eV. This difference is discussed in terms of the difference of the ionization energy of each acceptor materials. We also obtained the complete energy level diagrams of ClAlPc/pentacene/ITO and C60/pentacene/ITO, respectively.

  • PDF

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

Effects of Simultaneous Bending and Heating on Characteristics of Flexible Organic Thin Film Transistors

  • Cho, S.W.;Kim, D.I.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.470-470
    • /
    • 2013
  • Recently, active materials such as amorphous silicon (a-Si), poly crystalline silicon (poly-Si), transition metal oxide semiconductors (TMO), and organic semiconductors have been demonstrated for flexible electronics. In order to apply flexible devices on the polymer substrates, all layers should require the characteristic of flexibility as well as the low temperature process. Especially, pentacene thin film transistors (TFTs) have been investigated for probable use in low-cost, large-area, flexible electronic applications such as radio frequency identification (RFID) tags, smart cards, display backplane driver circuits, and sensors. Since pentacene TFTs were studied, their electrical characteristics with varying single variable such as strain, humidity, and temperature have been reported by various groups, which must preferentially be performed in the flexible electronics. For example, the channel mobility of pentacene organic TFTs mainly led to change in device performance under mechanical deformation. While some electrical characteristics like carrier mobility and concentration of organic TFTs were significantly changed at the different temperature. However, there is no study concerning multivariable. Devices actually worked in many different kinds of the environment such as thermal, light, mechanical bending, humidity and various gases. For commercialization, not fewer than two variables of mechanism analysis have to be investigated. Analyzing the phenomenon of shifted characteristics under the change of multivariable may be able to be the importance with developing improved dielectric and encapsulation layer materials. In this study, we have fabricated flexible pentacene TFTs on polymer substrates and observed electrical characteristics of pentacene TFTs exposed to tensile and compressive strains at the different values of temperature like room temperature (RT), 40, 50, $60^{\circ}C$. Effects of bending and heating on the device performance of pentacene TFT will be discussed in detail.

  • PDF

저분자 유기 광다이오드 소자의 p형 유기물 두께에 따른 전류 특성에 관한 연구 (A Study on the Thickness Dependence of p-type Organic Layer on the Current of Small Molecule-based Organic Photodiode)

  • 김영우;이동운;전용민;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.101-105
    • /
    • 2023
  • Organic photo Diodes (OPDi) give multiple advantages in the growing interest of the flexible optoelectronic devices. Organic semiconductors are freeform as they can deposit on any substrate, so it could be flexible. But the inorganic material photodiodes (PDs) are usually fabricated on silicon wafers which are solid. So, normally PDs are inflexible. By those reasons, we decided to make the vacuum deposited small molecule OPDi. We have investigated the OPDi's J-V characteristic by changing the thickness of p-type layer of OPDi. This device consists of indium-tin-oxide (ITO) / 2,3:6,7-dibenzanthracene (pentacene) / buckminsterfullerene (C60) / aluminum (Al). Its J-V characteristics were measured in the probe station(4156C) that can give dark condition while measuring. And for the luminance characteristics, the photocurrent was measured with the bright halogen lamp and a probe station.

  • PDF

Single-Crystal Organic Semiconductor Nanowires as Building Blocks for Nanojunction Devices

  • 이기석;이린;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.261.1-261.1
    • /
    • 2013
  • Well-aligned nanowire arrays can be used as building blocks for nanoscale device. Recently, we reported that well-aligned single-crystal organic nanowires has been created by using a direct printing method which is named liquid-bridge mediated nanotransfer molding (LB-nTM). Moreover, multi-layering nanostructures can be fabricated by repeating this printing process. As a result, it is possible to make simple and basic concept of heterojunction devices such as crossed nanowire devices. We fabricated crossed single-crystal organic nanowires nanojunction devices from 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-PEN) and fullerene (C60) single-crystal nanowires using by direct printing method in solution process. Crossed TIPSPEN/ C60 single-crystal nanowires diode has rectifying behavior with on/off ratios of ~13. In addition, the device shows photodiode characteristics as well as rectification. Our study represent methodology of heterojunction devices using single-crystal nanowires, thereby provide a new direction of future nanoelectronics.

  • PDF

Substrate 온도에 따른 Ink-Jet Printed OTFT의 특성 변화 (Effect of Substrate Temperature on Electrical Properties of Ink-Jet Printed OTFTs)

  • 김영훈;공주영;박성규;주병권;한정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1274-1274
    • /
    • 2008
  • In this report, the effect of substrate temperature on the electrical properties of ink-jet printed triisopropylsilyl (TIPS) pentacene organic thin-film transistors (OTFTs) has been investigated. The electrical properties such as mobility and on/off ratio were decreased as the substrate was heated above room temperature. The field-effect mobility of decreased from $10^{-2}cm^2/Vs$ to $10^{-5}cm^2/Vs$ and the on/off ratio decreased from $10^6$ to $10^4$ when the substrate temperature was heated from room temperature to 60$^{\circ}C$.

  • PDF

유기반도체용 고성능 박막 봉지재의 제조 및 평가 (Fabrication and Characterization of High-Performance Thin-Film Encapsulation for Organic Electronics)

  • 김남수
    • 대한기계학회논문집B
    • /
    • 제36권10호
    • /
    • pp.1049-1054
    • /
    • 2012
  • 유기전자재료의 발전으로 박막화, 유연화, 경량화가 가능하면서, 저가의 생산비용으로 제조 될 수 있는 유기반도체의 개발 및 상용화에 대한 연구가 활발히 이루어지고 있다. 하지만, 유기반도체를 구성하는 유기재료 및 전극재료가 미량의 수분과 반응으로 성능이 저하되는 문제로 상용화의 큰 걸림돌이 되고 있다. 따라서 유기재료 및 전극을 동작환경의 수분으로부터 보호할 수 있는 고성능 투습 방지막 개발에 대한 연구가 많이 진행되고 있다. 본 연구에서는 $SiO_x$/parylene 및 $SiN_x$/parylene 구조를 이용한 다중 구조의 고성능 박막 봉지막을 개발하고, 개발된 박막을 Ca-corrosion test를 이용하여 수분투과율을 측정하였다. 또한 박막 봉지재를 유기태양전지에 적용하여 유기태양전지의 수명과 투습특성과의 관계를 확인하였다.