• Title/Summary/Keyword: Pensky-Martens closed cup

Search Result 31, Processing Time 0.022 seconds

Measurement of Flash Points and Autoignition Temperatures for Xylene Isomers (크실렌 이성질체의 인화점과 최소자연발화온도의 측정)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.40-45
    • /
    • 2009
  • In order to investigate the compatibility of data in MSDS(Material Safety Data Sheet), the flash point of xylene isomer was measured by using Pensky-Martens closed cup (ASTM D93), Setaflash closed cup(ASTM D3278), Tag open cup(ASTM D1310), and Cleveland open cup (ASTM D92) testers. Also, the AITs(autoignition temperatures) of xylene isomers were measured by using ASTM E659-78 tester. The measured the flash points and the AITs were compared with literatures and MSDS in KOSHA(Korea Occupational Safety and Health Agency). The measured the flash points and the AITs were different from those in literatures and MSDS. As a result, this paper is shown that it is needed to investigate combustion characteristics of xylene isomer for the fire safety objectives.

  • PDF

Investigation of Reliability of Flash Points and Autoignition Temperatures of Acids (산류(Acids)의 인화점과 최소자연발화온도의 신뢰성 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.42-47
    • /
    • 2009
  • The flash point and the AIT(auto-ignition temperature) are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. In order to know the accuracy of data in MSDS(Material Safety Data Sheet), the flash point of n-acids were measured by using Pensky-Martens closed cup tester(ASTM D93), Setaflash closed cup tester(ASTM D3278), Tag open cup tester(ASTM D1310) and Cleveland open cup tester(ASTM D92). Also, the AIT of n-acids were measured by using ASTM E659-78 tester. The measured the flash points and the AIT were compared with literatures and MSDS in KOSHA. The measured the flash points and the AIT were different from those in literatures and MSDS. Therefore, This paper shows that it is needed to investigate the MSDS compatibility of n-acids for the fire safety objectives.

The Estimation of Lower Flash Point for n-Pentanol+n-Propionic Acid and n-Pentanol+n-Butyric Acid Systems Using Optimization Method (최적화 기법을 활용한 n-pentanol+n-propionic acid 및 n-pentanol+n-butyric acid계의 하부 인화점 추산)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.73-78
    • /
    • 2007
  • The lower flash points for the n-pentanol+n-propionic acid and n-pentanol+n-butyric acid systems, in air at atmospheric pressure, were measured by using Pensky-Martens closed cup apparatus. The experimental data were compared with the values calculated by the Raoult's law and optimization method. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.

  • PDF

Prediction and Measurement of Flash Point and Fire Point of Aromatic Hydrocarbons (방향족탄화수소의 인화점과 연소점 측정 및 예측)

  • Ha Dong-Myeong;Han Jong-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.21-26
    • /
    • 2005
  • The flash points and the fire points are one of the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable substances. In this study, the flash points of aromatic hydrocarbons, were measured by using Pensky-Martens Closed Cup apparatus(ASTM-D93) and Tag Open-Cup apparatus(ASTM D 1310-86). Also the fire points of aromatic hydrocarbons, were measured by using Tag Open-Cup apparatus. The measured flash points were in good agreement with reference values. The measured fire points compared with the estimated values based on 1.23 times stoichiometric concentration. The values calculated by the proposed equation were in agreement with measured values.

  • PDF

Flash Points of Water+n-Propanol System Using Closed-Cup Measurement Apparatus (밀폐계 측정장치를 이용한 물-노말프로판올 계의 인화점)

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.140-145
    • /
    • 2002
  • The Flash Point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of chemical materials. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The lower flash points for the Water + n-Propanol systems were measured by using Pensky-Martens closed cup tester. The experimental data were compared with the values calculated by the laws of Raoult and van laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

A Study on Flash Points and Fire Points of Acids Using Closed Cup and Open-cup Apparatus (밀폐식과 개방식 장치를 이용한 Acid류의 인화점과 연소점에 관한 연구)

  • Ha, Dong-Myeong;Han, Jong-Geun;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.20 no.3 s.63
    • /
    • pp.29-34
    • /
    • 2006
  • The flash and fire point are the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable material. The flash point is defined as the lowest temperature at which a flammable liquid gives off sufficient vapor to form an ignitable mixture with air near its surface or within a vessel. The fire point is the temperature of the flammable liquid at which there will be flaming combustion, sustained 5 seconds in response to the pilot flame. In this study, the flash points and fire points were measured to present raw data of the flammable risk assessment for acids, using Pensky-Martens Closed Cup(C.C.) apparatus (ASTM-D93) and Tag Open-cup (O.C.) apparatus(ASTM D 1310-86). The measured fire points were compared with the estimated values based on 1.11 times stoichiometric concentration. The values calculated by the proposed equation were in good agreement with measured values.

The Lower Flash Points of the n-Butanol+n-Decane System

  • Dong-Myeong Ha;Yong-Chan Choi;Sung-Jin Lee
    • Fire Science and Engineering
    • /
    • v.17 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • The lower flash points for the binary system, n-butanol+n-decane, were measured by Pensky-Martens closed cup tester. The experimental results showed the minimum in the flash point versus composition curve. The experimental data were compared with the values calculated by the reduced model under an ideal solution assumption and the flash point-prediction models based on the Van Laar and Wilson equations. The predictive curve based upon the reduced model deviated form the experimental data for this system. The experimental results were in good agreement with the predictive curves, which use the Van Laar and Wilson equations to estimate activity coefficients. However, the predictive curve of the flash point prediction model based on the Willson equation described the experimentally-derived data more effectively than that of the flash point prediction model based on the Van Laar equation.

Measurement and Prediction of the Flash Points for Flammable Liquid Mixtures with Non-flammable Component

  • Ha, Dong-Myeong;Yu, Hyun-Sik;Kang, Gyeun-Hee;Ann, Jeong-Jin;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.12-16
    • /
    • 2008
  • Lower flash points for the binary systems, carbon tetrachloride+o-xylene and water+n-butanol were measured by Pensky-Martens closed cup tester. The Raoult's law and optimization method using van Laar equation were used to predict the lower flash points and were compared with experimental data. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.

Measurement of Flash Points of Epoxy Resin Solutions by Using Additives (첨가제 사용에 의한 Epoxy Resin 용액의 인화점 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.22-27
    • /
    • 2007
  • The knowledge of the flash point of the various liquid substances is required because of process safety and control in industrial fire protection. The epoxy resin is one of versatile resins that has wide selection of using curing agents and additives to achieve various applications such as coatings, adhesives, interior materials, reinforced plastics and electrical insulation. In this study, the lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems were measured by using Pensky-Martens closed cup tester. The lower flash points for p-xylene+epoxy resin, o-xylene+epoxy resin and n-butanol+epoxy resin systems rapidly increased 80wt%, 90wt% and 95wt% of epoxy resin concentration, respectively. This results serve as a guide to estimate flash point of any epoxy resin solution.

The Measurement and Prediction of Minimum Flash Point Behaviour for Flammable Binarry Solution Using Pensky-Martens Closed Cup Tester

  • Ha, Dong-Myeong;Choi, Yong-Chan;Lee, Sung-Jin
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.6-10
    • /
    • 2010
  • The flash point of liquid solution is one of the most important flammability properties that used in hazard and risk assessments. Minimum flash point behaviour (MFPB) is showed when the flash point of a liquid mixture is below the flash points of the individual components. In this paper, the lower flash points for the flammable binary system, n-decane+n-octanol, were measured by Pensky-Martens closed cup tester. This binary mixture exhibited MFPB. The measured flash points were compared with the values calculated by the Raoult's law and the optimization method using van Laar and UNIQUAC equations. The optimization method were found to be better than those based on the Raoult's law, and successfully estimated MFPB. The opimization method based on the van Laar equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the UNIQUAC.