• Title/Summary/Keyword: Penicillium 속

Search Result 77, Processing Time 0.035 seconds

Survey of Fungal Infection and Fusarium Mycotoxins Contamination of Maize during Storage in Korea in 2015 (2015년 국내산 저장 옥수수에서의 후자리움 독소 오염 및 감염 곰팡이 조사)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.278-282
    • /
    • 2017
  • Maize is one of the most cultivated cereals as a staple food in the world. The harvested maize is mainly stored after drying, but its quality and nutrition could be debased by fungal spoilage and mycotoxin contamination. In this study, we surveyed mycotoxin contamination fungal infection of maize kernels that were stored for almost one year after harvest in 2015. The amount of deoxynivalenol and zearalenone detected were higher than the other mycotoxin, such as aflatoxin, ochratoxin, fumonisin and T-2 toxin. In particular, level of deoxynivalenol was detected as $1200{\pm}610{\mu}g/kg$ in small size kernels, which was four to six times higher than the large and the medium size kernels. Moreover, the amount of deoxynivalenol, zearalenone, and fumonisin were increased with discolored kernels. 10 species including Fusarium spp., Aspergillus spp. and Penicillium spp. were isolated from the maize kernels. F. graminearum was predominant in the discolored kernels with detection rates of 60% (red) and 40% (brown). Our study shows that the mycotoxin contents of stored maize can be increased by discolored maize kernels mixed. Therefore elimination of the contaminated maize kernels will help prevent fungal infection and mycotoxin contamination in stored maize.

Endophytic Fungal Diversity Associated with the Roots of Coastal Sand-dune Plants in the Sindu-ri Coastal Sand Dune, Korea (신두리 해안사구에 자생하는 사구식물 내생진균의 다양성 분석)

  • You, Young-Hyun;Seo, Yeonggyo;Yoon, Hyeokjun;Kim, Hyun;Kim, Ye-Eun;Khalmuratova, Irina;Rim, Soon-Ok;Kim, Changmu;Kim, Jong-Guk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 2013
  • The coastal sand-dune plants of eight species; Argusia sibirica, Calystegia soldanella, Elymus mollis, Lithospermum zollingeri, Raphanus sativus, Salsola collina, Zoysia macrostachya, and Zoysia sinica were collected from the Shindu-ri coastal sand dune. Ninety-eight endophytic fungal strains were isolated from the roots of these plants, analyzed, and identified by sequences in their internal transcribed spacers (ITS) at the ITS1, 5.8S, and ITS2 regions. The diversity of endophytic fungi isolated from coastal sand-dune plants was confirmed with various diversity indices. The fungal strains belonged to thirteen orders: Capnodiales (3.09%), Eurotiales (70.10%), Glomerellales (1.03%), Helotiales (3.09%), Hypocreales (9.28%), Mortierellales (2.06%), Onygenales (1.03%), Ophiostomatales (1.03%), Pleosporales (1.03%), Polyporales (1.03%), Russulales (1.03%), Saccharomycetales (2.06%), and Xylariales (1.03%). Of the endophytic fungal strains collected, Penicillium (59.18% in Eurotiales) and Fusarium (5.10% in Hypocreales) were the most abundant in coastal sand-dune plants. The endophytic fungal strains isolated from C. soldanella were more diverse compared to strains from the other coastal sand-dune plants.

Antimicrobial and Antifungal Activities of Lisianthus (Eustoma grandiflorum) Essential Oil (리시안셔스 유래 에센셜 오일의 항세균 및 항진균 효과)

  • Ji, Keunho;Kim, Dong Kwang;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.27 no.4
    • /
    • pp.430-434
    • /
    • 2017
  • Essential oils are fragrant oils extracted from the leaves, stems, peels, petals and roots of aromatic plants cultivated by natural means or using organic agricultural techniques. Essential oils have commonly been used as antibacterial and antifungal agents. In the present study, essential oil was extracted from lisianthus (Eustoma grandiflorum [Raf.] Shinn.) and tested for antifungal activities against three eumycetes (Penicillium pinophilum, Chaetomium glogosum and Aspergillus niger). Lisianthus essential oil showed high antifungal activities against three eumycetes, especially against Aspergillus niger, for which the resulting minimum inhibitory concentration (MIC) was 0.005 mg/ml. In addition, the extracted essential oil was shown to have antimicrobial activity against ten intestinal pathogenic bacteria (Escherichia coli, Salmonella typhimurium, Klebsiella pneumonia, Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Pseudomonas aeruginosa, Bacillus subtilis, Enterococcus faecalis and Vibrio parahaemolyticus) according to the disc diffusion method and was also shown to exhibit strong antibacterial activity against an additional three pathogenic bacteria (Bacillus subtilis, Listeria monocytogenes and Vibrio parahaemolyticus). These results indicate that lisianthus essential oil could be used as an antibiotic against harmful bacteria that produce intestinal illnesses. From the present study, we suggest that lisianthus extracts can be utilized as potential antifungal and antibacterial agents and for the development of pharmaceutical and cosmetic products.

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.

Seasonal Distribution and Diversity of Airborne Fungi in a Wooden Cultural Heritage Site: A Case Study of The Seonamsa Temple, Suncheon (목조문화재에서 계절에 따른 부유 진균의 분포 및 다양성에 관한 연구: 순천 선암사를 중심으로)

  • Hong, Jin Young;Kim, Young Hee;Lee, Jeung Min;Kim, Soo Ji;Jo, Chang Wook;Park, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.46 no.2
    • /
    • pp.122-133
    • /
    • 2018
  • The Seonamsa temple is located on steep terrain surrounded by forests and valleys, and is a place that the temple is scared of biological damage because it has high humidity and low wind levels. Therefore, we investigated a concentration and diversity of airborne fungi in indoor and outdoor by collecting air each season. The outdoor fungal load was far higher in spring ($276CFU/m^3$), autumn ($196CFU/m^3$), summer ($128CFU/m^3$) than in winter ($24CFU/m^3$). The lowest located Jijangjeon and upper located Wontongjeon showed the highest distribution of $337.4CFU/m^3$ in summer and $333.4CFU/m^3$ in autumn, respectively. Summer is the season with large variations in the concentration of airborne fungi between indoor and outdoor, a concentration of airborne fungi in indoor was maximum three times higher than these in outdoor with $128CFU/m^3$. Although the most fungi were collected in spring, fungal diversity was richer in summer and autumn with 28 genera 45 species and 25 genera 47 species, respectively. In particular, the concentration of airborne fungi was the most highest in all sampling sites in autumn, of which Ascomycota members accounted for 86% and Cladosporium genus was dominated. The most kind of Penicillium (16 species) was mainly distributed in indoor air in summer, autumn and winter.

Inhibitory Substance on the Snake Venoms Produced by Penicillium sp. (사독의 조해물질에 관한 연구)

  • Seu, Jung-Hwn;Yi, Dong-Heui
    • Microbiology and Biotechnology Letters
    • /
    • v.7 no.2
    • /
    • pp.75-89
    • /
    • 1979
  • One strain of Penicillium sp. (175-66-B), isolated from soil, was able to produce a substance that has a strong inibition activity against the Agkistrodon and Trimeresurus venoms. In this experiment, the chemical and biological properties of the sample were investigated. As an inhibitory substance, it was effective to the proteinase, hemorrhagic and lethal factors of Agkistrodon and Trimeresurus venoms, and also effective to several fractions of the proteinases and hemorrhagic factors of Agkistrodon halys blomhoffi venom. Moreover, in the addition of prednisotone, it was more effective for the cure of the mouse envenomated with the venom amount of two fold of MLD$_{100}$. This substance was very stable to the acid, alkali and heat. Its melting point was high enough to sublime at 222$^{\circ}C$ without any decomposition. This sample was easily dissolved only in hot water, but not in several organic solvents except for a little dissolution in elate. It did not have the chelating activity. It had very strong specificity to the snake venoms. but its activity was depressed by the addition of zinc or cupric salts. This sample had no acute toxicity to the mouse. Its chemical formula was $C_{16}$ $H_{12}$$N_2$ $O_{10}$ with the molecular weight of about 392. It has two epoxy groups and four carboxyl radicals, but amino, nitrite and nitrate radicals, unsaturated bonds and aromatic ring were not detected. Theuchemical configuration of this sample was suggested to be;

  • PDF

Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens (Bacillus spp. 및 Serratia marcescens에 의한 사과 푸른곰팡이병의 생물적 방제)

  • Kim, Yong-Ki;Lee, Seong-Don;Ryu, Jae-Gee;Ryu, Jae-Dang
    • Research in Plant Disease
    • /
    • v.9 no.4
    • /
    • pp.229-236
    • /
    • 2003
  • The 1080 epiphytic bacteria obtained from 370 samples of pome and stone fruits including apple, pear, peach, grape, apricot and Chinese quince were screened for antagonistic activity against postharvest pathogens, Penicillium expansum, Alternaria alternata and Botrytis cinerea. Among tested antagonistic bacteria, eight bacterial isolates inhibited mycelial growth of the postharvest pathogens and were identified as Bacillus amyloliquefaciens (three strains), B. megaterium, B. subtilis var. gladioli, B. licheniformis, B. pumilus and Serratia marcescens based on biochemical characteristics and utility of carbon and nitrogen compounds (Biolog system). Eight carbohydrates were evaluated for their effect on mycelial growth and germination of the postharvest pathogen, P. expansum to select nutrients for enhancing bio-control efficacy. The growth of four selected antagonists, B. amyloliquefaciens P43-2, B. amyloliquefaciens A71-2, B. licheniformis P94-1, and S. marcescens P76-9 were also tested. As a result, 1% glucose (w/v) strongly stimulated growth of the antagonists, suppressed mycelial growth of the postharvest pathogen, and had a little comparatively stimulatory effect on germination of the the postharvest pathogen. It was confirmed that the addition of 1% glucose (w/v) greatly enhanced biocontrol effect of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9. Application of B. amyloliquefaciens P43-2, B. licheniformis P94-1, and S. marcescens P76-9 with the addition of 1% glucose (w/v) increased the control efficacy up to 48%, 46%, 14% compared with those of the antagonists without glucose, respectively. When the antagonists were applied to control postharvest disease caused by P. expansum in apple wounds, the population of B. amyloliquefaciens P43-2 and B. licheniformis P94-1 increased until 4 days after inoculation (DAI) of the antagonists and then decreased from 10 DAI. Meanwhile the population of S. marcescens P76-9 decreased at early stage (4 DAI), but increased from 7 DAI, and finally maintained constantly until 10 DAI in apple wounds.

Purification of Glucose Oxidase by Affinity Chromatography and Its Characterization (친화성 크로마토그래피를 이용한 글루코오스 옥시다아제의 정제와 효소특성)

  • Ko Jung Hwan;Byun Si Myung
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.165-174
    • /
    • 1979
  • A purification technique of glucose oxidase was developed. Using the gluconyl-${\omega}$-aminohexyl Sepharose affinity chromatography, it was partially purified 14.6 folds with 79.7% yield. With the combination of the affinity chromatography and Sepharose 6B gel filtration, the enzyme was purified 27.2 folds from the broth with 74.1% yield. The final purified preparation showed 90.83 U of glucose oxidase activity per mg of protein and a single band by 7% polyacrylamide gel electrophoresis. The absorption spectrum and substrate specificity of the enzyme were studied and the fianal preparation showed the optimal pH between 5.6 and 6.0, the optimal temperature at $40^{\circ}C$, $8.5{\times}10^{-3}M$ of $K_m$ for D-glucose, and 3.43 kcal/mole of the activation energy.

  • PDF

Identification of oyster mushroom green mold pathogen that causes and pathological characteristics (느타리버섯 발생하는 푸른곰팡이병원균의 동정 및 병원학적 특성)

  • Jhune, Chang-Sung;Leem, Hoon-Tae;Park, Hye-Sung;Lee, Chan-Jung;Weon, Hang-Yeon;Seok, Soon-Ja;Yoo, Kwan-Hee;Sung, Gi-Ho
    • Journal of Mushroom
    • /
    • v.12 no.2
    • /
    • pp.132-137
    • /
    • 2014
  • Green mold disease caused by Trichoderma species has recently caused considerable damage to oyster mushroom industries in Korea. This disease Trichoderma, Penicillium, Aspergillus, such as in (genus) to be included in a disease caused by a species that collectively the largest incidence and damage is caused by the pathogen Trichoderma genus. T. longibrachiatum, Trichoderma koningii, Trichoderma virens, T. hazianum, T. atroviride, and T. pseudokoningii were detected on oyster mushroom beds and, of them, T. virens, T. hazianum, T. longibrachiatum was the most frequently detected. The knowledge concerning physiological and ecological properties of Trichoderma spp. was essential for their effective control. T. longibrachiatum hyphal growth is very fast, spore formation, and, particularly well-chlamydospore formation characteristics, and reviews are dark green discoloration. T. koningii, fast mycelial growth, aerial hyphae and spores in aerial hyphae formation is concentrated. T. virens, especially if the color change caused by spore-forming, slow, late in infection, the more severe the damage is discovered. T. hazianum fast mycelial growth, white aerial hyphae and late turns dark green. After spore formation hyphae glob of white pustules or tufts on the top of the formation. T. atroviride. aerial hyphae usually the mycelial growth and spore formation in the unlikely event of the formation and smells similar to the smell of coconut is that. Fast T. pseudokoningii mycelial growth, spore formation is formed around the inoculation site, discoloration of the medium color and well formed chlamydospores.

Distribution and Characteristics of Culturable Airborne Microorganisms in Composting Facility and Landfill (퇴비화 시설과 매립장에서 배양 가능한 공기중 미생물의 분포 및 특성)

  • Lee, Bo-Ra;Cha, Min-Ju;Jeong, Choon-Soo;Kim, Jong-Seol
    • Korean Journal of Microbiology
    • /
    • v.48 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • Bioaerosols generated from composting facilities and landfills may create health risks for workers and nearby residents. To determine the levels of culturable airborne bacteria and fungi in bioaerosols, samples were seasonally collected at a composting facility and a landfill in Ulsan, Korea with an impaction-type sampler. Concentrations of heterotrophic bacteria averaged (in $MPN/m^3$) $6.5{\times}10^3$ (range $1.5{\times}10^2-1.5{\times}10^4$) in the composting facility and $3.9{\times}10^3$ (range $6.0{\times}10^1-9.3{\times}10^3$) at the entrance of the facility. These concentrations were 460 and 280 times higher than those of reference sites. Coliform bacteria were detected both inside and entrance of the facility. On the landfill, heterotrophic bacterial concentrations averaged (in $MPN/m^3$) $4.9{\times}10^2$ (range $1.7{\times}10^2-1.0{\times}10^3$), while they averaged $3.7{\times}10^2$ (range $4.8{\times}10^1-1.3{\times}10^3$) at the parking lot of the landfill. These concentrations were 35 and 26 times higher than those of reference sites. When we isolated and tentatively identified heterotrophic bacteria, Pseudomonas luteola was the most dominant species in bioaerosols from the composting facility, whereas the most abundant one in reference samples was Micrococcus sp. Average concentrations of airborne fungi were measured between $4.8{\times}10^2$ and $7.9{\times}10^2\;MPN/m^3$ depending on sites, which were 2.1-3.4 times higher compared to those of reference sites. While Cladosporium, Alternaria, and Penicillium were commonly identified fungal genera, genus Aspergillus was identified only in bioaerosols from the composting facility.