• Title/Summary/Keyword: Penetration shape

Search Result 283, Processing Time 0.025 seconds

Comparison of Theoretical model with Experiment in Bead Shape of Laser Welding (레이저 용접의 비드 형상에 대한 실험치와 이론 결과의 비교)

  • Kim, J.D.;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.201-210
    • /
    • 1994
  • A theoretical heat-flow model incorporating with a constant moving CO$_{2}$ laser beam has been analyzed to predict depth and the shape of bead section during last beam welding. The laser beam is exponentially attenuated with an abosrption coefficient in the material. The solution can be expressed in terms of normalized variables. The experimental data were generated by usint CW 2 CO$_{2}$ laser with multi beam mode and CW 3 kW CO$_{2}$laser with Gaussian mode. The specimens were made as bead-on-plate welds for SM 10C, STS 304, STS 316, STS 420 and pure Nickel. The maximum possible penetration depth and the shape of beas section for given sources of laser power, travel speed and beam spot size can be prdicted with this model in a given material.

  • PDF

The Effect of Welding Parameters on the Weld Shape in Pulsed GTA Welding of a STS304L Stainless Steel Capsule (STS304L 캡슐의 펄스형 GTA 용접에서 용접변수들이 용접부 형상에 미치는 영향)

  • Lee, Hyoung-Keun;Han, Hyon-Soo;Son, Kwang-Jae
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.64-71
    • /
    • 2007
  • The aim of this paper is to investigate the effects of welding parameters on the weld shape in seal-welding of STS304L capsule for manufacturing a radioisotope source which is widely used in nondestructive testing of metal structures using gamma ray. Pulsed gas tungsten arc (Pulsed GTA) welding is performed for thin cross sectional area of the capsule. Seven welding parameters including current waveform parameters and arc length etc. are selected as main process parameters using design of experiment. The weld shape such as bead width, penetration depth, weld area, aspect ratio and area rate is investigated to assess the effects of welding parameters. As results, the combination of pulse duty/welding speed largely affects on bead width, penetration depth, area and aspect ratio. Finally, it is concluded that the key parameters are the combination of pulse duty/welding speed, base current and arc length, and their optimal conditions are 50%/1.77mm/s, 6.4A and 1 mm.

End shape and rotation effect on steel pipe pile installation effort and bearing resistance

  • Saleem, Muhammad A.;Malik, Adnan A.;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.523-533
    • /
    • 2020
  • The current study focuses on the effect of the end shape of steel pipe piles on installation effort and bearing resistance using the pressing method of installation under dense ground conditions. The effect of pile rotation on the installation effort and bearing resistance is also investigated. The model steel piles with a flat end, cone end and cutting-edge end were used in this study. The test results indicated that cone end pile with the pressing method of installation required the least installation effort (load) and showed higher ultimate resistance than flat and cutting-edge end piles. However, pressing and rotation during cutting-edge end pile installation considerably reduces the installation effort (load and torque) if pile penetration in one rotation equal to the cutting-edge depth. Inclusion of rotation during pile installation reduces the ultimate bearing resistance. However, if penetration of the cutting-edge end pile equal to the cutting-edge depth in one rotation, the reduction in ultimate resistance can be minimized. In comparing the cone and cutting-edge end piles installed with pressing and rotation, the least installation effort is observed in the cutting-edge end pile installed with penetration rate equal to the cutting-edge depth per rotation.

Modeling of chloride diffusion in concrete considering wedge-shaped single crack and steady-state condition

  • Yang, Keun-Hyeok;Cheon, Ju Hyun;Kwon, Seung-Jun
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.211-216
    • /
    • 2017
  • Crack on concrete surface allows more rapid penetration of chlorides. Crack width and depth are dominant parameters for chloride behavior, however their effects on chloride penetration are difficult to quantify. In the present work, the previous anisotropic (1-D) model on chloride diffusion in concrete with single crack is improved considering crack shape and roughness. In the previous model, parallel-piped shape was adopted for crack shape in steady-state condition. The previous model with single crack is improved considering wedge shape of crack profile and roughness. For verifying the proposed model, concrete samples for nuclear power plant are prepared and various crack widths are induced 0.0 to 1.2 mm. The chloride diffusion coefficients in steady-state condition are evaluated and compared with simulation results. The proposed model which can handle crack shape and roughness factor is evaluated to decrease chloride diffusion and can provide more reasonable results due to reduced area of crack profile. The roughness effect on diffusion is evaluated to be 10-20% of reduction in chloride diffusion.

A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate (Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구)

  • Kim, In-Ho;Lee, Gil-Young;Ju, Jeong-Min;Park, Kyoung-Tae;Chun, Byong-Sun
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

A Study on the Improvement of Penetration Capability of a Shaped Charge by Controlling the Jet Mass Parameters (제트 질량 변수 조절에 의한 성형작약 관통성능 증대 연구)

  • So, Byeongkwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.566-573
    • /
    • 2015
  • The most important factor for the penetration performance of shaped charge is the liner design. By designing the liner to have properties of both high jet tip velocity and long jet break-up time, the better penetration performance could be acquired. Usually it is very difficult to satisfy above two conditions simultaneously. In this study, the liner with the shape of ogive was developed to have relatively larger jet mass compared to the conventional trumpet liner. The designed shaped charge showed jet properties with high jet tip velocity and long jet break-up time by using ogive liner and wave shaper. A commercially available hydro-dynamic code AUTODYN-2D was used for numerical analysis of jet formation. The flash X-ray test and the static penetration test were conducted to verify the results of numerical analysis.

Keyhole-structure and Stability in Laser-beam Penetration Into an Absorbing Liquid (Water) (레이저 빔의 흡수 액체 내 침투에 의해 생성된 키홀 구조와 안정성)

  • 김동식;장덕석
    • Laser Solutions
    • /
    • v.4 no.2
    • /
    • pp.13-19
    • /
    • 2001
  • When a high-power laser beam is irradiated on the surface of material, it is well known that a cavity, called a keyhole induced by the pressure action of the vapor plume, is generated in the molten material. This paper describes the interaction between a pulsed CO$_2$ laser beam and water. The laser-beam is used to generate and maintain a conical depression in the water surface similar to the keyhole created during laser penetration welding. Experimental results show that the depth of laser-beam penetration is limited by hydrodynamic instability. The instability of the surface cavity can be understood by the capillary instability of a hollow jet. Theoretical computation of the steady keyhole shape has been performed. modifying the model suggested by Andrews et al. (1976). The model predicts the qualitative behavior of the keyhole but significantly underestimates the average diameter.

  • PDF

Life Prediction by Retardation Behavior of Fatigue Crack and its Nondestructive Evaluation (피로균열의 지연거동에 따른 수명예측 및 비파괴평가)

  • Nam, Ki-Woo;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.36-48
    • /
    • 1999
  • Fatigue life and crack retardation behavior after penetration were experimentally examined using surface pre-cracked specimens of aluminium alloy 5083. The Wheeler model retardation parameter was used successfully to predict crack growth behavior after penetration. By using a crack propagation rule, the change in crack shape after penetration can be evaluated quantitatively. Advanced, waveform-based acoustic emission (AE) techniques have been successfully used to evaluate signal characteristics obtained form fatigue crack propagation and penetratin behavior in 6061 aluminum plate with surface crack under fatigue stress. Surface defects in the structural members are apt to be origins of fatigue crack growth, which may cause serious failure of the whole structure. The nondestructive analysis on the crack growth and penetration from these defects may, therefore, be one of the most important subjects on the reliability of the leak before break (LBB) design. The goal of the present study is to determine if different sources of the AE could be identified by characteristics of the waveforms produced from the crack growth and penetration. AE signals detected in four stages were found to have different signal per stage. With analysis of waveform and power spectrum in 6061 aluminum alloys with a surface crack, it is found to be capabilities on real-time monitoring for the crack propagation and penetration behavior of various damages and defects in structural members.

  • PDF

Assessment of Underwater Penetration Performance for the Shape of the External Device of Shaped Charge (성형폭약 외부장치 형상에 따른 수중 관입성능 평가)

  • Suk, Chul-Gi;Noh, You-Song;Ko, Young-Hun;Park, Hoon;Cho, Sang-Ho;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • For underwater steel structure, cut that underwater shaped charge device that combines a spring hose, which is an external device of pressure resistance and flexibility with flexible shaped charge, was invented. As a basic experiment for an optimum condition design, an penetration performance was compared by external device shape. To evaluate the result of an experiment, image analysis was carried out after obtaining the model by using the liquid rubber for the penetrated steel plate. To simulate the penetrating process of shaped charge, the AUTODYN program has been used. As a result of analysis, while the average penetration depth of circular and square shaped external devices were similar, the penetration quality was more uniform in the case of circle. In addition, water infiltration occurred in square case, displacement and strain rate according to the increase of the water pressure were measured high.

Fatigue Life and Peneration Behaviour of Material under Combined Tension and Bending Stress (인장 굽힘피로를 받는 부재의 피로수명과 균열관통)

  • 남기우
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.41-49
    • /
    • 1994
  • The leak-before-break(LBB) design on the large structures such as ship's hull, tank structure, pressure vessels etc. is one of the most inportant subjects for the evaluation and the assurance of safety. In these structures, various loads are acting. In some structural members, therefore, out-of-plane stress due to bending often may become with in-plane stress due to stretching. In the present report, the characteristics of fatigue life and peneration behaviour from a surface cracked plate under combined tension and bending have been studied experimentally and analytically by using eccentricity. Estimation of fatigue crack growth was done with the Newman-Raju formula before penetration, and with the stress intensity factor after penetration proposed by the author. Calculated aspect ratio showed the good agreement with the experimental result. It was also found that particular crack growth behaviour and crack shape after penetration can be satisfactorily evaluated using the K solution proposed.

  • PDF