• 제목/요약/키워드: Penetration kinetic

검색결과 68건 처리시간 0.025초

용융침투법으로 제조한 유리-알루미나 복합체: II. Kinetic 연구 (Glass-alumina Composites Prepared by Melt-infiltration: II. Kinetic Studies)

  • 이득용;장주웅;이명현;이준강;김대준;박일석
    • 한국세라믹학회지
    • /
    • 제39권2호
    • /
    • pp.145-152
    • /
    • 2002
  • 상용 알루미나 분말(0.5, 2.8, 12, 45 ${\mu}m$)을 die-press법을 이용하여 1120$^{\circ}C$에서 2시간 1차 소결하여 다공성 전성형체를 제조하고 1100$^{\circ}C$에서 0∼2시간까지 $La_2O_3-Al_2O_3-SiO_2$계 유리를 용융 침투시켜 유리 침투 깊이와 침투 시간간의 kinetic을 조사하였다. 침투시간이 증가할수록 유리 침투깊이는 Washburn 식의 포물선 관계를 가지면서 증가하였으며 침투 상수인 K는 알루미나 입도가 증가할수록 증가하였다. 유리-알루미나 복합체의 강도값은 2.8${\mu}m$ 알루미나가 분산된 복합체까지 충진률의 증가로 인하여 증가하다가 알루미나 입도가 증가할수록 감소하였다. 파괴인성은 알루미나 입도가 증가할수록 균열 휨 현상과 균열과 알루미나 입자간 결합에 의하여 증가하였다.

젤라틴 Simulant를 이용한 비비탄총 탄환의 위험성에 관한 실험적 연구 (Experimental Studies on Risks of BB Pellets Using Gelatine Based Simulants)

  • 박달재;김형석;이영순
    • 한국안전학회지
    • /
    • 제26권3호
    • /
    • pp.29-33
    • /
    • 2011
  • Experimental studies were performed to investigate the injury potential of BB pellets through gelatine based simulants. In order to record BB pellet movements penetrating into the target simulant, a high-speed video camera was used. In this study the first investigation involved the effects on concentrations, homogeneity and gelation times of the gelatine simulant. The second investigation involved the penetration depth of the pellets to the simulant by different distances between the BB gun and the simulant. The final one is associated with impact velocity, threshold velocity and penetration depth of the pellets by different kinetic energies of the BB gun. Results provided the basis in assessing the injury potential of BB pellets.

저온 분사 공정을 통하여 형성된 Al/Ni 복합소재 코팅의 특성 평가 (Property Evaluation of Kinetic Sprayed Al-Ni Composite Coatings)

  • 변경준;김재익;이창희;김시조;이성
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.72-79
    • /
    • 2014
  • Shaped charge(SC) ammunition is a weapon that penetrates directly the target by made jet from metal liner on impacting at a target. In SC, the liner occupies significantly important role causing an explosion and penetration of the target. The Al-Ni composite coating was deposited on copper liner in a solid state via kinetic spraying to improve the explosive force. The mechanical properties, reactivity and microstructure were investigated to confirm the possibility of kinetic sprayed Al/Ni composite coating as a reactive liner material. Reactive liner using Al/Ni composite exhibited much enhanced reactivity than pure copper liner due to Self-propagating High-temperature Synthesis (SHS) reaction with significantly improved adhesive bond strength. Especially, among the Al/Ni composite coatings, AN11 (the Al versus Ni atomic percent ratio is 1:1) showed the greatest reactivity due to its widest reaction area between deposited Al and Ni.

고강도콘크리트에 대한 기존 내충격 성능평가식의 비상체 선단형상계수 유효성 평가 실험 연구 (Experimental Study on Validation of Nose Shape Factors of Projectile in Existing Impact formulas for High-Strength Concrete)

  • 김상희;강현구;홍성걸
    • 대한건축학회논문집:구조계
    • /
    • 제35권2호
    • /
    • pp.13-20
    • /
    • 2019
  • This study was conducted in order to validate the nose shape factors of projectile in existing impact formulas for high-strength concrete in the event of collision with high-speed projectiles. In order to conduct the high-speed impact experiment, specified concrete strengths of 35, 100, and 120 MPa were prepared and tested in collision with both conical and hemispherical projectiles. The results showed that the measured penetration depth did not decrease linearly as concrete strength increased. Comparing the ratio penetration depth to the kinetic energy of the conical and hemispherical projectiles, the difference in the ratios for high strength concrete was observed to decline as concrete strength increased. However, in the modified NDRC and the Hughes formulas, the difference in the predicted penetration depth of the conical and hemispherical projectiles was constant despite increasing concrete strength. The modified NDRC and Hughes formulas should be improved upon so as to be applied to high strength concrete.

산란 및 투과된 수소 이온의 분자 전산 연구 III. 니켈 (100) 표면 층의 운동에너지 (Molecular Simulation Studies of Scattered and Penetrated Hydrogen Ions III. Kinetic Energies in Ni (100) layers)

  • 서승혁;민웅기
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.191-199
    • /
    • 2001
  • In this paper molecular dynamics simulations have been carried out to investigate energy and momentum transfer of hydrogen ions impacted on the Ni (100) surface with $45^{\circ}$ and $90^{\circ}$ incident angles. The initial kinetic energies of the hydrogen ion were ranged from 100 eV to 1,600 eV to study the layer-by-layer energy variation as a dependence of incident energies and angles. At low incident energies, the scattering energy transfer is dominated by the normal motion of surface layers due to thermal vibrations and multiple collision effects. For higher incident energies, the scattering energy transfer in a normal direction is greater than that in a parallel direction. In the case of penetration, the amount of transferred energies do not affect much on Ni layers at low incident energy. It was found channeling effects through Ni layers with increasing incident energies.

  • PDF

GMAW에서 용적입사를 고려한 용융지 유동 및 형상해석 (Analysis of Weld Pool Flow and Shape Considering the Impact of Droplets in GMAW)

  • 박현성;이세현;엄기원
    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.40-47
    • /
    • 1998
  • In the present study, depressions of the GMA weld pool due to the impact of droplet are numerically investigated. The numerical simulation is conducted on the basis of the Navier-Stokes equation and the volume of fluid(VOF) functions. The kinetic energy of transferring droplet makes a depression of the weld pool surface. The surface active element affects the depression of the weld pool. The droplets transferred efficiently to the bottom of the weld pool, along with electromagnetic force make the finger shape penetration at the high current GMAW.

  • PDF

A numerical study on the damage of projectile impact on concrete targets

  • Lu, Gang;Li, Xibing;Wang, Kejin
    • Computers and Concrete
    • /
    • 제9권1호
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the numerical simulation of the rigid 12.6 mm diameter kinetic energy ogive-nosed projectile impact on plain and fiber reinforced concrete (FRC) targets with compressive strengths from 45 to 235 MPa, using a three-dimensional finite element code LS-DYNA. A combined dynamic constitutive model, describing the compressive and tensile damage of concrete, is implemented. A modified Johnson_Holmquist_Cook (MJHC) constitutive relationship and damage model are incorporated to simulate the concrete behavior under compression. A tensile damage model is added to the MJHC model to analyze the dynamic fracture behavior of concrete in tension, due to blast loading. As a consequence, the impact damage in targets made of plain and fiber reinforced concrete with same matrix material under same impact velocities (650 m/s) are obtained. Moreover, the damage distribution of concrete after penetration is procured to compare with the experimental results. Numerical simulations provide a reasonable prediction on concrete damage in both compression and tension.

현대 패션에 표현된 움직임의 미적 특성에 관한 연구 (Aesthetic Characteristics of 'Movement' Expressed in Modern Fashion)

  • 박운경
    • 복식
    • /
    • 제55권8호
    • /
    • pp.112-126
    • /
    • 2005
  • The purpose of this study is to analyze the aesthetic characteristics of 'movement' expression in modern fashion(1910-2004) based on a study of modern fine arts which adopted 'movement' element in their work. In this study the meaning of movement was defined as motion, changing position and transformation. Literature survey through books and research papers and demonstrative study with fashion collection photos were undertaken. The results wert as follows ; 1) Kinetic art, optical an, light kinetic art and technology art such as video and computer art have adopted 'movement' element in their work. 2) The plasticities of 'movement' fine arts were identified as mutual penetration, increase of visibility, use of non-traditional materials and dynamism. The internal meanings were identified as expansion of aesthetic experience and the concept of fine art, optimistic attitude on technology, spectator participation and integration of art and life. 3) The 'movement' expression in modern fashion was distinctively found in 1910s-20s(avant-garde fashion), 1960s (kinetic and optical art fashion) and mid 1990s to 2004 (techno-cyber fashion). 4) The plasticities of the 'movement' expression in modern fashion were identified as non-definition, use of non-traditional materials, dynamism. The internal meanings were identified as expansion of aesthetic experience and the concept of dress, optimistic attitude on technology, playfulness through participation. In conclusion, the expression of 'movement' in modern fashion has optimistic viewpoint on the development of modern society and is one of the interesting design points which will be pursued in the fellowing years.

3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구 (Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method)

  • 김채형;정인석;최병일;토시노리 코오치;고로 마쓰야
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.378-385
    • /
    • 2012
  • 벤트 혼합기는 혼합기 후류에 존재하는 재순환 영역으로 공기를 유입시켜 연료-공기 혼합을 증대시키는 혼합기이다. Stereoscopic PIV기법을 통해 얻은 3차원 속도, 와류, 난류운동에너지를 토대로 계단형 혼합기를 기본 모델로 하여 벤트 혼합기의 성능을 분석하였다. 벤트 혼합기는 두터운 전단층으로 인해 높은 침투거리를 보였으며, 난류운동에너지는 주로 주유동과 제트유동의 경계면을 따라 분포하였다. 이 난류 영역은 혼합영역 내에서 활발히 물질전달을 일으키며, 혼합 증대를 가져온다.

  • PDF

폴리카보네이트 판의 경사충격에 의한 도비 거동 수치연구 (Numerical Study on Ricochet Behavior with Inclined Impact of Polycabonate Plates)

  • 양태호;이영신;조종현
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2014
  • In this study, the numerical simulation using AUTODYN-3D program was investigated angle trajectory prediction for inclined impacts of projectiles. The penetration and perforation of polycarbonate plate by 7.62 mm projectile was investigated numerically. The characteristic structure of the projectile's trajectory in the polycabonate plates was studied. Two combined failure criteria were used in the target plate, and the target plate was modeled with the properties of polycarbonate for simulating the ricochet phenomenon. The effect of the angle of inclination on the trajectory and kinetic energy of the projectile were studied. The dynamic deformation behaviors tests of polycabonate were compared with numerical simulation results which can be used as predictive purpose. From the simulation, the ricochet phenomenon was occurred for angles of inclination of $0^{\circ}{\leq}{\theta}{\leq}20^{\circ}$. The projectile perforated the plate for ${\theta}{\leq}30^{\circ}$, thus defining a failure envelope for numerical configuration. The numerical analyses are used to study the effect of the projectile impact velocity on the depth of penetration (DOP). It can be observed that the residual velocities were almost linear relative to penetration velocities. It means that polycarbonate has high resistance at higher velocities.