• Title/Summary/Keyword: Penetration equation

Search Result 213, Processing Time 0.028 seconds

Scale Effects of Warhead on Concrete Penetration (탄두의 콘크리트 관통 시 스케일 영향)

  • Kim, Seokbong;Lee, Changsoo;Yoo, Yohan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.238-245
    • /
    • 2017
  • This paper deals with the scale effects of warhead on concrete penetration. We investigated the scale effects using finite element analysis and Young's penetration equation. As the scale of penetration test decreases, the strain rate effects of target increases, and then strength of concrete target increases. This means the residual velocity and penetration depth of warhead decreases as the test model size decreases. Young's penetration equations are transformed with various penetrator mass and scale cases as a function of scale ratio. Penetration distance and residual velocity are not simply changed by the geometric scaling law.

On the Penetration Phenomena for Thin and Multi-Layered Finite Thickness Plates by a Long Rod Penetrator (긴 관통자에 의한 유한박판 및 적층표적재의 관통현상 연구)

  • 이창현;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1759-1772
    • /
    • 1994
  • In this study, we re-examined the Tate's modified Bernoulli equation to study penetration phenomena for long rod projectile into single or multi-layered finite thickness plates. We used the force equlibrium equation at mushroomed nose/target interface instead of conventional pressure equation at the stagnation point. In our penetration model, we considered the velocity dependent $R_t$ value for semi-infinite target and considered only the back face effect for finite target. To compensate for $R_t$ value according to target's thickness and back face effect, we used the spherical cavity expansion theory for semi-infinite plate and used the cylindrical cavity expansion theory for finite plate. Also we developed the experimental technique using make screen to measure the penetration duration time at each layered plate. In 3-layered laminated RHA/mild steel/ A1 7039 plate, we observed that spall had occured around the back face of A1 7039 plate by the stress wave interaction. Through the comparison between theoretical and experimental data including Lambert's results, we conform that our study has good confidences.

A New Strength Equation of Concrete by Penetration Resistance Test (관입시험법에 의한 콘크리트의 강도 추정)

  • Park Song-chul;Yoo Jae-Eun;Kim Min-Su;Kwon Young-Wung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.125-128
    • /
    • 2004
  • This study concerns the new estimated strength equation of concrete by penetration test. There are not only few estimate strength equations of concrete, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. In this study, there performed a series of penetration test with in 730days' concrete structures and proposed equations as follows; $$Linear\;:\;f_{ck}=2.95d-80.0(r^2= 69.8\%)$$ $$Quadratic\;:\;f_{ck}=0.204d^2-12.15d+193.2(r^2=83.6\%)$$ here, fck : Estimated compressive strength of concrete by MPa d: exposed probe length by mm.

  • PDF

Prediction of collection performance for a granular bed filter filled with various shapes of packing material (다양한 형상의 충전물로 채워진 충전층 집진기의 집진성능 예측)

  • Jae-Hyun Park;Myong-Hwa Lee
    • Particle and aerosol research
    • /
    • v.19 no.4
    • /
    • pp.145-154
    • /
    • 2023
  • Granular bed filters are widely used to remove particulate matter in flue gas and are filled with various shapes of packing material. The packing material plays an important role in determining the overall collection performance, such as pressure drop and collection efficiency. The pressure drop of a granular bed filter has been calculated using the Ergun equation, while the collection efficiency has been predicted using the log-penetration equation based on the single sphere theory. However, a prediction equation of collection efficiency for a granular bed filter filled with non-spherical packing materials has not been suggested yet. Therefore, in this study, three different shapes of packing materials (sphere, cylinder, and irregular) were prepared to propose a prediction equation. The pressure drop and collection efficiency in a granular bed filter filled with each shape of packing material were measured experimentally and compared with theoretically predicted values. We found that experimentally measured pressure drops matched well with values theoretically predicted using the Ergun equation considering the shape factor. However, experimental collection efficiencies were higher than theoretical ones predicted by the log-penetration equation using the single sphere theory. We modified the log-penetration equation by employing a shape factor and found a good relationship between experimental and theoretical collection efficiencies.

A New Estimated Strength Equation of Concrete by Penetration Resistance Test (관입시험법에 의한 콘크리트의 압축강도 추정식)

  • 권영웅;신정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.643-646
    • /
    • 2003
  • This study concerns the new estimated strength equation of concrete by penetration test. There are not only few estimate strength equations of concrete, but also many problems to apply them because of time, cost, easiness, structural damage, reliability and so on. In this study, there performed a series of test for one year and estimated strength equation of concrete as follows; Linear: fck =3.38d - 95.1 ($$r^2$$=88.6%) Quadratic: fck =0.188$$d^2$$- 10.76d + 166.3 ($$r^2$$=96.7%) here, fck : estimated compressive strength of concrete by Mpa d: exposed probe length by mm.

  • PDF

Analysis on Penetration of Chloride Ion into Carbonated Concrete in Marine Atmospheric Conditions (해양 대기 환경 하에서 탄산화 콘크리트에 대한 염소이온 침투 해석)

  • Choi, Doo-Man;Jang, Seung-Yup
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.233-236
    • /
    • 2006
  • Chloride attack and carbonation induced corrosion of reinforcement are those of the main factors which cause the deterioration of concrete structures. The objective of this study is to suggest an analytic model for the prediction of chloride penetration into carbonated concrete, in order to make up for the current codes. Carbonation depth model considering the moisture effect is validated by being compared with the test data and the analytic model on chloride penetration into carbonated concrete is developed. Finally, the corrosion-initiation time has been predicted by the present model, being compared with that by the current code equation. The comparison shows that the current code equation can underestimate the chloride penetration into carbonated concrete in marine atmospheric conditions.

  • PDF

A new approach for predicting sulfate ion concentration in concrete

  • Mohammad Ghanooni-Bagha;Mohsen Ali Shayanfar;Sajad Momen
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Aggressive environmental conditions, and especially the acidic effects of sulfate ion penetration, have reduced the lifetime of concrete structures in some areas, especially coastal and marine areas. In this research, at first, samples made of type II and V cement were kept in a solution of magnesium sulfate (MgSO4) for a period of 90 and 180 days, the change of appearance. Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD), were used to analyze the microstructure and the complex mineral composition of the concrete after exposure to corrosive environments. Then solving the differential equation governing the sulfate ion penetration, which is based on the second Fick law, it has been tried to determine the concentration of sulfate ions inside the concrete. In the following, an attempt has been made to improve the prediction of sulfate ion concentration in concrete by using Crank's penetration equation. At the same time, the coefficient in the Crank's solution have been optimized by using the Particle Swarm Optimization (PSO algorithm). The comparison between the results shows that the values obtained from Crank's relation are closer to the experimental results than the equation obtained from Fick's second law and shows a more accurate prediction.

A New Proposal for the Estimated Equation of Concrete Strength by Penetration Test (관입시험법에 의한 콘크리트 압축강도 추정식의 제안에 관한 연구)

  • 권영웅;신정식;박만철;이성용;김민수;박송철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.381-384
    • /
    • 2002
  • This study aims to propose the new strength equation of concrete by penetration test. There are not only few estimate strength equation of concrete, but also many problems to apply them to the real structure because of speed, cost, easiness, structual damage, reliability and so on. For this study, there performed a series of test and proposed a strength equation as follows ; fc = 5661 - 219.5d + $2.17d^2 (단, R^2 = 98.6%$) fc : estimated compressive strength of concrete by kgf/$cm^2$ d: penetrated depth of concrete by mm.

  • PDF

Standard Penetration Test Performance in Sandy Deposits (모래지반에서 표준관입시험에 따른 관입거동)

  • Dung, N.T.;Chung, Sung-Gyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.39-48
    • /
    • 2013
  • This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

Analysis of Penetration Depths in Pavement in Korea (포장도로에서의 동결심도 조사분석)

  • Kim, Young-Chin;Hong, Seung-Seo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.475-482
    • /
    • 2005
  • Many public facilities including roadway, railway, and embedded pipe lines in this country have been damaged by the repeated freezing and thawing of the soil during winter and spring every year. However, there are only few research results in field of frozen ground in this country. Also, there are no the formulation of the reasonable equation for frost penetration depths and of the criterion for identifing potentially frost-susceptible soil in design manual of pavement yet. Through this study it is anticipated to asses the frost action problem in roadway, railway, and water suppply lines and to establish the design criterion about pavement in seasonal cold region.

  • PDF