• Title/Summary/Keyword: Penetration Reduction

Search Result 287, Processing Time 0.026 seconds

A Study on the Effect of Applying Water Seepage Lowering Method Using Swelling Waterstop for Expansion Joint in the Concrete Dam (콘크리트 댐에서 수축이음부의 수팽창성 차수재를 이용한 침투저감 공법 적용효과 연구)

  • Han, Kiseung;Lee, Seungho;Kim, Sanghoon;Kim, Sejin;Pai, Sungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.10
    • /
    • pp.21-29
    • /
    • 2021
  • Most concrete gravity-type dams in and out of the country were constructed by column method to control cracks caused by concrete hydration heat generated during construction, resulting in a certain level of leakage after impoundment through various causes, such as contraction joints and construction joints. However, due to the characteristics of concrete structures that shrink and expand according to temperature, concrete dams have vertical joints and drains to allow penetration. PVC waterproof shows excellent effects in completion of the dam, which however increases the possibility of interfacial failure due to different thermal expansion. Other causes of penetration may include problems with quality control during installation, generation of cracks due to heat of hydration of concrete, waterproofing methods, etc. In the case of Bohyunsan Dam in Yeongcheon, North Gyeongsang Province, the amount of drainage in the gallery was checked and underwater, and it was confirmed that there are many penetrations from drainage holes connected to vertical joints, and that some of the PVC waterproofs are not fully operated. As a new method to prevent penetration through vertical joints, D.S.I.M. (Dam Sealing Innovation Method) developed by World E&C was applied to Bohyunsan Dam and checked the amount of drainage in the gallery. As a result of first testing three most leaking vertical joints, the drain in the gallery was reduced by 87% on the average and then applied to the remaining 13 locations, which showed a 83% reduction effect based on the total drain in the gallery. Summing up these results, it was found that D.S.I.M. preventing water leakage from the upstream face is a valid construction method to reduce the water see-through and penetration quantity seen in downstream faces of concrete dams. If D.S.I.M. is applied to other concrete dams at domestic and abroad, it is expected that it will be very effective to prevent water leakage through vertical joints that are visible from downstream faces.

Chemical Resistance of Low Heat Cement Concrete Used in Wastewater Treatment Structures Built on Reclaimed Land (해안매립지 하수처리시설물에 적용한 저발열시멘트 콘크리트의 내화학성 평가)

  • Chung, Yongtaek;Lee, Byungjae;Kim, Yunyong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.113-119
    • /
    • 2019
  • Concrete structures built on reclaimed land are combined with chemical erosion such as chlorine and sulfate ions from seawater. Chloride attack deteriorates the performance of the structure by corroding reinforcing bars. In addition, the waste water treatment structure has a problem that the concrete is deteriorated by the sulfate generated inside. Therefore, in this study, the characteristics and chemical resistance of low heat cement concrete used in wastewater treatment structures constructed on reclaimed land were evaluated. As a result of the experiment, the target slump and air content were satisfied under all the mixing conditions. The slump of low heat cement (LHC) concrete was higher than that of ordinary portland cement (OPC) concrete, while the air content of LHC concrete was smaller than that of OPC concrete with the same mix proportion. As a result of compressive strength test, OPC concrete showed higher strength at younger age compared to 28 days. In contrast, LHC concrete exhibited higher strength than OPC concrete at the age of 56 days. As a result of chlorine ion penetration tests, LHC-B concrete showed chlorine ion penetration resistance performance of the "very low" level at the age of 56 days. As a result of chemical resistance evaluation, when the LHC concrete is applied without epoxy treatment, chemical resistance is improved by about 18% compared to OPC concrete. In testing chemical resistance, the epoxy coated concrete exhibited less than 5% strength reduction when compared to sound concrete.

Study on the Vertical Pile Capacity of Base-grouted Pile (선단 하부지반 그라우팅된 개단강관말뚝의 연직 지지력에 관한 연구)

  • 정두환;최용규;정성교
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • Static load tests were performed for open-ended piles, closed-ended piles, piles with grouted toe, and base-grouted piles by using calibration chamber. Then vertical bearing capacities determined from load tests were compared with each other. The stability of base-grouted pile during a simulated seaquake was investigated by changing the penetration depth. Also, static load tests and seaquake tests for 2-piles and 4-piles group were performed. The bearing capacity of the pile grouted inside the toe was 11.2~30.8% less than that of open-ended pile because of reduction of base resistance due to disturbance of base soil under pile toe. The bearing capacity of a base-grouted pile was 23.8~33.9% more than that of an open-ended pile and was similar to that of a closed-ended pile. The bearing capacity of base-grouted group pile was increased ; the bearing capacity of base-grouted 2-piles group increased 14.6~31.8% compared to that of open-ended 2-piles group, and that of base-grouted 4-piles group increased 15.3~22.4% compared to that of open-ended 4-piles group. During the simulated seaquake in deep sea, stability of base-grouted pile was found to be dependent on the pile penetration depth. During seaquake motion, single long base-grouted pile longer than 20m was stable and short base-grouted pile shorter than 12m failed. But relatively long base-grouted pile longer than 12m kept mobility state. Bearing capacity of base-grouted group pile with penetration depth less than 7m was degraded a little bit ; so, base-grouted group pile could maintain mobility condition.

  • PDF

Evaluation of Compressive Strength and Freeze-thaw Resistance Properties of Concrete using Superabsorbent Polymer (고 흡수성 폴리머를 혼입한 콘크리트의 압축 강도 및 동결융해 저항성 평가)

  • Kim, Il-Sun;Choi, So-Yeong;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.86-94
    • /
    • 2020
  • When the Superabsorbent Polymer (SAP) is added into concrete, the slump decreases rapidly, deteriorating the workability, the internal curing effect can be obtained through the water absorption and discharge process, and the internal voids of the concrete are increased. In this study, the effects of internal curing and voids were evaluated by evaluating the compressive strength, freeze-thaw resistance, and chloride penetration resistance of SAP-adding concrete that secured workability using a water reducing agent. Also, the internal curing effect of SAP was evaluated by dividing the curing conditions of concrete into water curing and sealed curing. From the result, as the SAP adding ratio increased, the amount of water reducing agent increased, and as for the compressive strength, the SAP adding ratio of 1.5% showed the greatest compressive strength. In particular, in the case of sealed curing showed higher compressive strength than the water curing. It is considered that the compressive strength increased due to the reduction of the effective water-cement ratio and the internal curing effect. Adding 1.0~1.5% of SAP improved the freeze-thaw resistance similar to the case of adding the AE agent, and the addition of more than 1.0% of SAP improved the chloride penetration resistance. The optimal adding ratio of SAP is 1.5%, and the adding ratio of 2.0% or more adversely affects the compressive strength and freeze-thaw resistance.

Effects of Inter-Vehicle Information Propagation on Chain Collision Accidents (차량간 정보전파의 연쇄추돌 교통사고에 대한 효과)

  • Chang, Hyun-ho;Yoon, Byoung-jo;Jeong, So-Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.303-310
    • /
    • 2018
  • One of most shocking headlines is a serious chain collision accident (CCA). The development of CCA has a temporal and spatial locality, and the information of the CCA is time-critical. Due to these characteristics of CCA, traffic accident information should be rapidly propagated to drivers in order to reduce chain collisions, right after the first accident occurs. Inter-vehicle communication (IVC) based on ad-hoc communication is one of promising alternatives for locally urgent information propagation. Despite this potential of IVC, research for the effects of IVC on the reduction of CCA has not been reported so far. Therefore, this study develops the parallel platform of microscopic vehicle and IVC communication simulators and then analyses the effects of IVC on the reduction of the second collision related to a series of vehicles. To demonstrate the potential of the IVC-based propagation of urgent traffic accident information for the reduction of CCA, the reduction of approaching-vehicle speed, the propagation speed of accident information, and then the reduction of CCA were analysed, respectively, according to scenarios of combination of market rates and traffic volumes. The analysis results showed that CCA can be effectively reduced to 40~60% and 80~82% at the penetration rates of 10% and 50%, respectively.

A Study on Evaluation of Modulus of Horizontal Subgrade Reaction through Field Test and Numerical Analysis (현장시험과 수치해석을 통한 수평지반반력계수 산정에 관한 연구)

  • Kang, Byungyun;Park, Minchul;Lee, Sihyung;Jang, Kisoo;Koo, Jagap;Park, Kyunghan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.5-15
    • /
    • 2016
  • For achieving stability and economic construction at a retaining wall construction site, quantitative parameters of soil properties with excavation steps coincides with the actual field site. The main parameters of retaining wall design such as deformation modulus and modulus of horizontal subgrade reaction are common with N value of standard penetration test. Therefore, this study is compared and analyzed about the mutual relationship which is SPT, PBT and PMT for overcoming inconsistency of the existing retaining wall design generalized. In addition, modulus of horizontal subgrade reaction and reduction factor with excavation steps are proposed through back analysis of elasto-plasticity and finite element method with actual field monitoring data. Finally, it is purpose that parameter errors are reduced for applying effective retaining wall design at a construction small and medium-sized.

A Change of Z-directional Structure in Multi-ply Sheet by Calendering (캘린더 처리에 의한 다층지의 두께방향 구조 특성 변화)

  • Youn, Hye-Jung;Lee, Hak-Lae;Chin, Seong-Min;Jung, Hyun-Do
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.23-32
    • /
    • 2005
  • A change of z-directional structural and surface properties by calendering has a great influence on liquid penetration into a sheet. It could be also important for multi-ply sheet because it contacts liquid dunhg coating or converting process. Therefore, this study was aimed to evaluate of a change of z-directional structure in multi-ply sheet by calendering. To do this, multi-ply sheets were prepared with various raw materials and calendered at the different pressure and temperature conditions. In multi-ply sheet which consisted of one kind of pulp fiber, thickness reductions were higher in top and bottom plies than in middle plies. And in the case of soft nip calender treatment with high temperature, top layer which was in contact with heating roll showed the highest reduction of thickness. Hard nip calender treatment showed U-shaped density profile in z-direction, but compression profile by SNC treatment was dependent on calendering condition. To examine z-directional structure of multi-ply sheet which was composed of different raw material for each layer, CLSM (Confocal Laser Scanning Microscopy) analyses were carried out on cross direction of sheet. It turned out to be a useful tool for investigating z-directional analysis. As a result, variation of thickness reduction in z-direction is dependent on ply structure, compressibility of pulp fiber, and calendering condition.

Growth and Chlorophyll Biosynthesis of Vigna angularis under Lead Stress

  • Suh-Young Koo;Sun
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.145-155
    • /
    • 1992
  • The effect of various supplies of lead singly and in combination with aluminium on growth and chlorophyll biosynthesis was investigated in 7-day-old Vigna anguluris seedlings. Expose to 50 $\mu$N Pb or more drastically reduced root elongation rate. Significant depressions in root growth was observed within 1 day and no recovery of growth was seen over the duration of treatment period. Root elongation decreased depending on the Pb concentrations. Root growth inhibition was stronger than shoot growth inhibition. The initiation of lateral roots appeared to be more sensitive to Pb than the growth of main roots. Inhibition of root and shoot elongation by Pb was lessened by combined exposure of Pb and Al, suggesting that the presence of AA reverse the inhibitory effect of Pb alone. With the histochemical sodium rhodizonate method the rate of Pb uptake was dependent on the Pb concentration and exposure time of the roots to Pb salts. Pb was first deposited on the root surface and then translocated radially in the root cap cells. During a longer Pb administration (up to 72 h) Pb penetration was nonuniform, with accumulation within the cortex or endodermis. There was drastic reduction in chlorophyll content by Pb. The Pb inhibition of chlorophyll synthesis was concentration dependent. 5-Aminolevulinic acid dehydratase (ALAD) activity exhibited distinct inhibition from control. Reduction in chlorophyll content was accompanied by proportional changes in ALAD activity. Chlorophyll content and ALAD activity were less affected by combined exposure of Pb and Al, suggesting that Al has a protective effect against the inhibiting action of Pb on photosynthetic activity.

  • PDF

Experimental Investigation on the Efficiency of Reducing Air Bubble Formation by Installing Horizontal Porous Plate in the Submerged Outlet Structure of Power Plant (발전소 수중방류구조 내 수평유공판 설치에 따른 거품발생 저감효과에 관한 실험적 연구)

  • Oh, Sang-Ho;Oh, Young-Min;Kang, Keum-Seok;Kim, Ji-Young
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.472-481
    • /
    • 2008
  • In this study hydraulic experiment was carried out to investigate the flow characteristics in the submerged outlet structure of Boryeong power plant and the efficiency of bubble reduction by installing horizontal porous plate in the outlet structure. The cross-sectional mean velocity in the submerged outlet structure was smaller than 1 m/s, the target value at the design stage to prevent bubble outflow to the open sea area. In addition, it was found that the maximum depth of bubble penetration is reduced 30 to 50% by installing the horizontal porous plate at the second falling location in the submerged outlet structure. It is expected that the total bubble amount entrained in the water will be most efficiently reduced by installing square-hole-shape porous plate of 20 cm hole size and making its central section as non-porous structure to dissipate the energy of falling water.

Growth and Chlorophyiil Biosynthesis of Vigna angularis under Lead Stress

  • Koo Suh-Young;Jin Sun-Young;Hong Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.2
    • /
    • pp.145-155
    • /
    • 1997
  • The effect of various supplies of lead singly and in combination with aluminium on growth and chlorophyll biosynthesis was investigated in 7-day-old Vigna angularis seedlings. Expose to 50 uM Pb or more drastically reduced root elongation rate. Significant depressions in root growth was observed within 1 day and no recovery of growth was seen over the duration of treatment period. Root elongation decreased depending on the Pb concentrations. Root growth inhibition was stronger than shoot growth inhibition. The initiation of lateral roots appeared to be more sensitive to Pb than the growth of main roots. Inhibition of root and shoot elongation by Pb was lessened by combined exposure of Pb and Al, suggesting that the presence of Al reverse the inhibitory effect of Pb alone. With the histochemical sodium rhodizonate method the rate of Pb uptake was dependent on the Pb concentration and exposure time of the roots to Pb salts. Pb was first deposited on the root surface and then translocated radially in the root cap cells. During a longer Pb administration (up to 72 h) Pb penetration was nonuniform, with accumulation within the cortex or endodermis. There was drastic reduction in chlorophyll content by Pb. The Pb inhibition of chlorophyll synthesis was concentration dependent. $\delta-Aminolevulinic$ acid dehydratase (ALAD) activity exhibited distinct inhibition from control. Reduction in chlorophyll content was accompanied by proportional changes in ALAD activity. Chlorophyll content and ALAD activity were less affected by combined exposure of Pb and Al, suggesting that Al has a protective effect against the inhibiting action of Pb on photosynthetic activity.

  • PDF