• Title/Summary/Keyword: Penetration Reduction

Search Result 287, Processing Time 0.034 seconds

Nondestructive Characterization of Degradation of EPDM Rubber for Automotive Radiator Hoses (자동차 냉각기 호스용 EPDM고무의 노화에 대한 비파괴 특성평가)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Choi, Youn-Joung;Shin, Sei-Moon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.368-376
    • /
    • 2005
  • Coolant rubber hoses for automobile radiators can be degraded and thus failed due to the influence of contacting stresses of air and coolant liquid under thermal and mechanical loadings. In this study, for EPDM(ethylene-propylene diene monomer) rubber conventionally used as a radiator hose material the aging behaviors of the skin part due to thermo-oxidative and electro-chemical stresses were nondestructively evaluated. Through the thermo-oxidative aging test, it was shown that the surface hardness IRHD(International Rubber Hardness Degrees) of the rubber increased with a considerable reduction of failure strain. On account of the penetration of coolant liquid into the skin part the weight of rubber specimens degraded by electro-chemical degradation(ECD) test increased, whereas their. failure strain and IRHD hardness decreased largely. The penetration of coolant liquid seemed to induce some changes in inner structure and micro hardness distribution of the rubbers. Consequently, EPDM rubbers degraded by thermo-oxidative aging and ECD could be characterized nondestructively by micro-hardness and chemical structure analysis methods.

Effect of Zirconia Addition on Mechanical Properties of Spinel/Zirconia-glass Dental Crown Composites Prepared by Melt-infiltration (용융침투법으로 제조한 인공치관용 스피넬/지르코니아-유리 복합체의 기계적 특성에 미치는 지르코니아 첨가효과)

  • Lee, Deuk-Yong;Kim, Byung-Soo;Jang, Joo-Wung;Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1028-1034
    • /
    • 2002
  • Spinel/zirconia-glass composites prepared by melt-infiltration were fabricated to investigate the effect of zirconia addition on mechanical and optical properties of the composites. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction in pore size as the amount of zirconia rose. Although the optimum strength(308 MPa) of the Spinel/zirconia-glass composites was observed when the zirconia was added up to 20 wt%, K and transmittance decreased as the zirconia content rose. In conclusion, it suggested that the positive effect of strength as a result of the addition of zirconia was not effective.

Solidify Properties of Radioactive Waste using Paraffin Wax (파라핀 왁스를 이용한 방사성 폐기물의 고화 특성)

  • Lee, Han Chul;Chang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.391-396
    • /
    • 2006
  • When radioactive wastewater was solidified treatment by cement, the drying rate of cement and the volume reduction ratio was decreased because of boric acid component in the wastewater. In order to supplement the demerit, effects of paraffin wax investigated in this study. Paraffin wax has a hydrophobic properties and a low affinity with inorganic materials. When the radioactive wastewater was tested by a small of wax, the compressive strength of solidified waste are decreased Therefore boric acid in radioactive wastewater are first treated by alkali salt and coated by the stearic acid. During the solidification step, The amount of paraffin wax addition get the result that the compressive strength of solidification with cement was the same as that with paraffin wax. The leaching properties of radioactive waste solidified was the same CFL (cumulative fraction leached), PR (penetration rate), effective diffusivity if paraffin wax content in solidified waste was 20% or 25%.

Hybrid Reference Function for Stable Stepwise Inertial Control of a Doubly-Fed Induction Generator

  • Yang, Dejian;Lee, Jinsik;Hur, Kyeon;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.86-92
    • /
    • 2016
  • Upon detecting a frequency event in a power system, the stepwise inertial control (SIC) of a wind turbine generator (WTG) instantly increases the power output for a preset period so as to arrest the frequency drop. Afterwards, SIC rapidly reduces the WTG output to avert over-deceleration (OD). However, such a rapid output reduction may act as a power deficit in the power system, and thereby cause a second frequency dip. In this paper, a hybrid reference function for the stable SIC of a doubly-fed induction generator is proposed to prevent OD while improving the frequency nadir (FN). To achieve this objective, a reference function is separately defined prior to and after the FN. In order to improve the FN when an event is detected, the reference is instantly increased by a constant and then maintained until the FN. This constant is determined by considering the power margin and available kinetic energy. To prevent OD, the reference decays with the rotor speed after the FN. The performance of the proposed scheme was validated under various wind speed conditions and wind power penetration levels using an EMTP-RV simulator. The results clearly demonstrate that the scheme successfully prevents OD while improving the FN at different wind conditions and wind power penetration levels. Furthermore, the scheme is adaptive to the size of a frequency event.

The Effect of Injection Angle and Nozzle Diameter on HCCI Combustion (분사각 및 분공 직경이 예혼합 압축착화 엔진 연소에 미치는 영향)

  • Kook, Sang-Hoon;Kong, Jang-Sik;Park, Se-Ik;Bae, Choong-Sik;Kim, Jang-Heon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The effect of injector geometries including the injection angle and number of nozzle holes on homogeneous charge compression ignition (HCCI) engine combustion has been investigated in an automotive-size single-cylinder diesel engine. The HCCI engine has advantages of simultaneous reduction of PM and NOx emissions by achieving the spatially homogenous distribution of diesel fuel and air mixture, which results in no fuel-rich zones and low combustion temperature. To make homogeneous mixture in a direct-injection diesel engine, the fuel is injected at early timing. The early injection guarantees long ignition delay period resulting in long mixing period to form a homogeneous mixture. The wall-impingement of the diesel spray is a serious problem in this type of application. The impingement occurs due to the low in-cylinder density and temperature as the spray penetrates too deep into the combustion chamber. A hole-type injector (5 holes) with smaller angle ($100^{\circ}$) than the conventional one ($150^{\circ}$) was applied to resolve this problem. The multi-hole injector (14 holes) was also tested to maximize the atomization of diesel fuel. The macroscopic spray structure was visualized in a spray chamber, and the spray penetration was analyzed. Moreover, the effect of injector geometries on the power output and exhaust gases was tested in a single-cylinder diesel engine. Results showed that the small injection angle minimizes the wall-impingement of diesel fuel that results in high power output and low PM emission. The multi-hole injector could not decrease the spray penetration at low in-cylinder pressure and temperature, but still showed the advantages in atomization and premixing.

Study on the Performance of Laser Welded joint of Aluminum alloys for Car Body

  • Kutsuna, Muneharu;Kitamura, Shuhei;Shibata, Kimihiro;Salamoto, Hiroki;Tsushima, Kenji
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired for car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. ill the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6N01 alloy welds. Aluminum alloy plate of 2.0mm in thickness with filler metal bar was welded by twin beam Nd:YAG laser facility (total power:5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 l/min was used. The defocusing distance is kept at 0 mm. At travel speeds of 3 to 9 m/min and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility (조립식 저류형 침투시설의 설계 및 공간적용 효과분석)

  • Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Study on the Performance of Laser Welded Joint of Aluminum Alloys for Car Body

  • Kutsuna, M.;Kitamura, S.;Shibata, K.;Sakamoto, H.;Tsushima, K.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.26-31
    • /
    • 2002
  • Considering the fuel consumption of car, a light structure of aluminum alloys is desired fer car body nowadays. However, fusion welding of aluminum alloys has some problems of reduction of joint efficiency, porosity formation and hot cracking. In the present work, investigation to improve the joint performance of laser welded joint has been carried out by addition of Cu, Ni, and Zr to A6NO 1 alloy welds. Aluminum alloy plate of 2.Omm in thickness with filler metal bar was welded by twin beam Nd: YAG laser facility (total power: 5kW). The filler metals were prepared by changing the chemical compositions for adding the elements into the weld metal. Thirteen filler metal bars were prepared and pre-placed into the base metal before welding. Ar gas shielding with a flow rate of 10 1/min was used. The defocusing distance is kept at 0 mm. At travel speeds off 3 to 9 and at laser power of 5kW (front beam 2kW rear beam 3kW), full penetration welds were obtained, whereas at travel speeds of 12 to 18 m/min and same power, partial penetration was observed. The joint efficiency of laser-welded joint was improved by the addition of Cu, Ni, and Zr due to the solid solution hardening, grain refining and precipitation hardening. The type of hardening has been further considered by metallurgical examination.

  • PDF

The Estimation of Surface Chloride Content and Durability of the Marine Concrete Bridges in South Coast (남해안 해상 콘크리트 교량의 표면염화물이온농도 및 내구성 평가)

  • Jung, Dae-Jin;Choi, Ik-Chang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.730-737
    • /
    • 2014
  • In this study, chloride content of marine concrete bridge at the south coast in 5~34years was calculated based on the measured data and the validity of the proposed value was evaluated. Also, correlation of existence of salt injury prevention coating, chloride content, carbonation depth and the compressive strength of marine concrete bridges were derived and relationship of the four was evaluated. According to the research results, surface chloride content value in the tidal zone proposed form KCI 2009 and value in the splash zone and atmospheric zone proposed form Cheong et al.(2005) was the most valid. Also, salt injury prevention coating of marine concrete bridges had the outstanding effect of preventing chloride content penetration, carbonation depth and reduction in the compressive strength. Compressive strength of concrete was reduced by the increase of carbonation depth and chloride content.