• Title/Summary/Keyword: Pendulum Dynamic

Search Result 185, Processing Time 0.029 seconds

Response of an Elastic Pendulum under Random Excitations (불규칙 가진을 받는 탄성진자의 응답 해석)

  • Lee, Sin-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.187-193
    • /
    • 2009
  • Dynamic response of an elastic pendulum system under random excitations was studied by using the Lagrangian equations of motion which uses the kinetic and potential energy of a target system. The responses of random excitations were calculated by using Monte Carl simulation which uses the series of random numbers. The procedure of Monte Carlo simulation is generation of random numbers, system model, system output, and statistical management of output. When the levels of random excitations were changed, the expected responses of the pendulum system showed various responses.

A Fuzzy Control of a 3-dimensional Inverted Pendulum Using a 3-axis Cartesian Robot

  • Shin, Ho-sun;chu, Jun-Uk;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.176.1-176
    • /
    • 2001
  • Conventional researches almost have been focused on the one dimensional inverted pendulum. Recently, Sprenger et al[2] have researched a two dimensional inverted pendulum Observing human's action to control an inverted pendulum, one can recognize that human uses a three dimensional metier including the up and down motion. In this paper, we propose a fuzzy logic controller(FLC) of a new three dimensional inverted pendulum system. We derive a dynamic equation of the mechanism including a 3-axis cartesian robot and a inverted pendulum. We propose a design method of a fuzzy controller of the yaw and pitch angles of a inverted pendulum. In the design, the redundant degree-of-freedom(DOF) of the robot ...

  • PDF

The Control and the Real-time Analysis of a Horizontally Rotating Inverted Pendulum (수평회전형 도립진자의 제어 및 실시간 해석)

  • 김효중;김헌진;강철구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.341-345
    • /
    • 1996
  • This paper presents the dynamics and the teal-time control of a horizontally rotating inverted pendulum. The dynamic equations representing three degrees of freedom rigid body motion of the pendulum are derived, and the state feedback controller is applied to the motion control of the pendulum. A 32 bit counter board with 16 bit hardware communication ability is developed to improve the real-time control performance and is applied to a horizontally rotating inverted pendulum. The simulation and experimental studies are conducted to evaluate the performance of the developed pendulum system and the timing in the real-time control is analyzed.

  • PDF

Serial pendulum DVA design using Genetic Algorithm (GA) by considering the pendulum nonlinearity

  • Lovely Son;Firman Erizal;Mulyadi Bur;Agus Sutanto
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.549-556
    • /
    • 2024
  • A serial pendulum dynamic vibration absorber (DVA) was designed to suppress the vibration of two degrees of freedom (Two-DOF) structure model. The optimal DVA parameters are selected using a genetic algorithm (GA) by minimizing the fitness function formulated from the system's frequency response function (FRF). Two fitness function criteria, using one and two target frequency ranges, were utilized to calculate the optimal DVA parameters. The optimized serial pendulum DVA parameters were used to reduce structural vibration under free and forced excitation conditions. The simulation study found that the serial pendulum DVA can effectively reduce the vibration response for a small excitation amplitude. However, the DVA performance decreases for a large excitation amplitude due to the nonlinearity of pendulum motion, and the percentage of vibration response attenuation is smaller than that obtained using a small excitation amplitude.

Curing Behaviors and Viscoelastic of UPE Resins with Different Glycol Molar Ratios (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 경화거동 및 점탄성)

  • Lee, Sang-Hyo;Park, Yung-Hoon;An, Seung-Kook;Lee, Jang-Oo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.15-24
    • /
    • 2001
  • In this study, the effects of different glycol molar ratios of unsaturated polyester(UPE) resins on the curing behaviors were investigated. The cross linking process was checked or monitored by differential scanning calorimetry(DSC) and by viscoelastic properties of rigid-body pendulum model. The knife-edge from which the pendulum is suspended, is immersed in a reaction mixture, and the change of the viscoelastic behavior brings on those of the period(T) and logarithmic decrement(${\Delta}$) of the damped free oscillations of the pendulum. The values of T and ${\Delta}$ obtained are related to the dynamic modulus(E') and modulus loss(E'). The information on the viscoelastic behavior of unsaturated polyester(UPE) resins during the curing process are shown to illustrate the usefulness of the techniques. As the content of NPG in a propylene glycol(PG)/NPG glycol mixture increased, both the cycle time during cure and the change of damping during cure of UPE resin decreased.

  • PDF

Experimental Observation of New Jumping Phenomena in the Pendulum System and Its Analytical Approach (진자 시스템에서의 새로운 도약 현상의 실험적 관측과 이론적 해석)

  • 최동준;정완섭;김수현
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.439-446
    • /
    • 1996
  • This paper introduces a newly designed pendulum system that enables the more accurate boservation of dynamic behaviour arising from both horizontal and vertical(i.e. two dimension) excitation. First, experiments were carried out to examine the frequency responses of the devised pendulum system. Interestingly, experimental results for the three excitation angles of 22, 32 and 48 degree show 'new' jump phenomena. For the further understanding of these phenomena, experimental investigationhas been made to identify the equation of motion of the pendulum system from experimental data. This attempt has revealed that the viscous, coulomb and aerodynamic damping factors are involved in the equation of motion. By applying the Ritz averaging method to the equation, it becomes apparent that the jumping phenomena of the pendulum system in this work is more theoretically understood.

  • PDF

Design of Optimal Kinetic Energy Harvester Using Double Pendulum (이중진자를 이용한 최적의 운동에너지 하베스터 설계)

  • Lee, Chibum;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.619-624
    • /
    • 2015
  • Owing to miniaturization and low-power electronics, mobile, implanted, and wearable devices have become the main trends of electronics during the past decade. There has been much research regarding energy harvesting to achieve battery-free or self-powered devices. The optimal design problems of a double-pendulum kinetic-energy harvester from human motion are studied in this paper. For the given form factor, the weight of the harvester, and the known human excitation, the optimal design problem is solved using a dynamic non-linear double-pendulum model and an electric generator. The average electrical power was selected as the performance index for the given time period. A double-pendulum harvester was proven to be more efficient than a single-pendulum harvester when the appropriate parameters were used.

Application to Stabilizing Control of Nonlinear Mobile Inverted Pendulum Using Sliding Mode Technique

  • Choi, Nak-Soon;Kang, Ming-Tao;Kim, Hak-Kyeong;Park, Sang-Yong;Kim, Sang-Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • This paper presents a sliding mode controller based on Ackermann's formula and applies it to stabilizing a two-wheeled mobile inverted pendulum in equilibrium. The mobile inverted pendulum is a system with an inverted pendulum on a mobile cart. The dynamic modeling of the mobile inverted pendulum was established under the assumptions of a cart with no slip and a pendulum with only planar motion. The proposed sliding mode controller was based upon a class of nonlinear systems whose nonlinear part of the modeling can be linearly parameterized. The sliding surface was obtained in an explicit form using Ackermann's formula, and then a control law was designed from reachability conditions and made the sliding surface attractive to the equilibrium state of the mobile inverted pendulum. The proposed controller was implemented in a Microchip PIC16F877 micro-controller. The developed overall control system is described. The simulation and experimental results are presented to show the effectiveness of the modeling and controller.

Analysis of the Dynamic Behavior of Guardrail Posts in Sloping Ground using LS-DYNA (LS-DYNA를 이용한 비탈면에 설치된 가드레일 지주의 동적거동)

  • LEE, Dong Woo;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • PURPOSES : This paper presents a finite element model to accurately represent the soil-post interaction of single guardrail posts in sloping ground. In this study, the maximum lateral resistance of a guardrail post has been investigated under static and dynamic loadings, with respect given to several parameters including post shape, embedment depth, ground inclination, and embedment location of the steel post. METHODS : Because current analytical methods applied to horizontal ground, including Winkler's elastic spring model and the p-y curve method, cannot be directly applied to sloping ground, it is necessary to seek an alternative 3-D finite element model. For this purpose, a 3D FHWA soil model for road-base soils, as constructed using LS-DYNA, has been adopted to estimate the dynamic behavior of single guardrail posts using the pendulum drop test. RESULTS : For a laterally loaded guardrail post near slopes under static and dynamic loadings, the maximum lateral resistance of a guardrail post has been found to be reduced by approximately 12% and 13% relative to the static analysis and pendulum testing, respectively, due to the effects of ground inclination. CONCLUSIONS : It is expected that the proposed soil material model can be applied to guardrail systems installed near slopes.

On the Normal Mode Dynamics of a Pendulum Absorber (정규모우드 방법을 활용한 진자형 흡진기의 비선형 동역학에 관한 연구)

  • 심재구;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.177-183
    • /
    • 1996
  • By utilizing the concept of normal modes, nonlinear dynamics is studied on pendulum dynamic absorber. When the spring mode loses the stability in undamped free system, a dynamic two-well potential is formed in Poincare map. A procedure is formulated to compute the forced responses associated with bifurcating mode and predict double saddle-loop phenomenon. It is found that quasiperiodic motion and stable periodic motion coexist in some parameter ranges, and only periodic motions or rotation of pendulum with chaotic fluctuation are observed in other ranges.

  • PDF