• Title/Summary/Keyword: Penalty parameter

Search Result 75, Processing Time 0.02 seconds

Bayesian analysis of latent factor regression model (내재된 인자회귀모형의 베이지안 분석법)

  • Kyung, Minjung
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.4
    • /
    • pp.365-377
    • /
    • 2020
  • We discuss latent factor regression when constructing a common structure inherent among explanatory variables to solve multicollinearity and use them as regressors to construct a linear model of a response variable. Bayesian estimation with LASSO prior of a large penalty parameter to construct a significant factor loading matrix of intrinsic interests among infinite latent structures. The estimated factor loading matrix with estimated other parameters can be inversely transformed into linear parameters of each explanatory variable and used as prediction models for new observations. We apply the proposed method to Product Service Management data of HBAT and observe that the proposed method constructs the same factors of general common factor analysis for the fixed number of factors. The calculated MSE of predicted values of Bayesian latent factor regression model is also smaller than the common factor regression model.

Anti-sparse representation for structural model updating using l norm regularization

  • Luo, Ziwei;Yu, Ling;Liu, Huanlin;Chen, Zexiang
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.477-485
    • /
    • 2020
  • Finite element (FE) model based structural damage detection (SDD) methods play vital roles in effectively locating and quantifying structural damages. Among these methods, structural model updating should be conducted before SDD to obtain benchmark models of real structures. However, the characteristics of updating parameters are not reasonably considered in existing studies. Inspired by the l norm regularization, a novel anti-sparse representation method is proposed for structural model updating in this study. Based on sensitivity analysis, both frequencies and mode shapes are used to define an objective function at first. Then, by adding l norm penalty, an optimization problem is established for structural model updating. As a result, the optimization problem can be solved by the fast iterative shrinkage thresholding algorithm (FISTA). Moreover, comparative studies with classical regularization strategy, i.e. the l2 norm regularization method, are conducted as well. To intuitively illustrate the effectiveness of the proposed method, a 2-DOF spring-mass model is taken as an example in numerical simulations. The updating results show that the proposed method has a good robustness to measurement noises. Finally, to further verify the applicability of the proposed method, a six-storey aluminum alloy frame is designed and fabricated in laboratory. The added mass on each storey is taken as updating parameter. The updating results provide a good agreement with the true values, which indicates that the proposed method can effectively update the model parameters with a high accuracy.

Performance Analysis of Initial Cell Search in WCDMA System over Rayleigh Fading Channels (레일리 페이딩 채널에서 W-CDMA 시스템의 초기 셀 탐색 성능 해석)

  • Song, Moon-Kyou
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.1-10
    • /
    • 2001
  • The 3-step cell search has been considered for fast acquisition of the scrambling code unique to a cell in the W -CDMA system. In this paper, the performance of the cell search scheme is analyzed in Rayleigh fading channels. And the system parameters for cell search scheme and the design parameters for the receivers are examined. The probabilities of detection, miss and false alarm for each step are derived in closed forms based on the statistics of CDMA noncoherent demodulator output. Through the analysis, the effect of threshold setting and post detection integration for each step is investigated, and the optimal values of the power allocation for the synchronization channels are also considered. The number of post-detection integrations for each step is a design parameter for the receiver, and the optimum values may depend on not only the power allocation for each channel related to the cell search, but the false alarm penalty time. It is shown that optimal values could be determined through the analysis. Also, the cumulative probability distribution of the average cell search time is obtained.

  • PDF

Anisotropic Total Variation Denoising Technique for Low-Dose Cone-Beam Computed Tomography Imaging

  • Lee, Ho;Yoon, Jeongmin;Lee, Eungman
    • Progress in Medical Physics
    • /
    • v.29 no.4
    • /
    • pp.150-156
    • /
    • 2018
  • This study aims to develop an improved Feldkamp-Davis-Kress (FDK) reconstruction algorithm using anisotropic total variation (ATV) minimization to enhance the image quality of low-dose cone-beam computed tomography (CBCT). The algorithm first applies a filter that integrates the Shepp-Logan filter into a cosine window function on all projections for impulse noise removal. A total variation objective function with anisotropic penalty is then minimized to enhance the difference between the real structure and noise using the steepest gradient descent optimization with adaptive step sizes. The preserving parameter to adjust the separation between the noise-free and noisy areas is determined by calculating the cumulative distribution function of the gradient magnitude of the filtered image obtained by the application of the filtering operation on each projection. With these minimized ATV projections, voxel-driven backprojection is finally performed to generate the reconstructed images. The performance of the proposed algorithm was evaluated with the catphan503 phantom dataset acquired with the use of a low-dose protocol. Qualitative and quantitative analyses showed that the proposed ATV minimization provides enhanced CBCT reconstruction images compared with those generated by the conventional FDK algorithm, with a higher contrast-to-noise ratio (CNR), lower root-mean-square-error, and higher correlation. The proposed algorithm not only leads to a potential imaging dose reduction in repeated CBCT scans via lower mA levels, but also elicits high CNR values by removing noisy corrupted areas and by avoiding the heavy penalization of striking features.

PSO-Based PID Controller for AVR Systems Concerned with Design Specification (설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기)

  • Lee, Yun-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.330-338
    • /
    • 2018
  • The proportional-integral-derivative(PID) controller has been widely used in the industry because of its robust performance and simple structure in a wide range of operating conditions. However, the AVR(Automatic Voltage Regulator) as a control system is not robust to variations of the power system parameters. Therefore, it is necessary to use PID controller to increase the stability and performance of the AVR system. In this paper, a novel design method for determining the optimal PID controller parameters of an AVR system using the particle swarm optimization(PSO) algorithm is presented. The proposed approach has superior features, including easy implementation, stable convergence characteristic and good computational efficiency. In order to assist estimating the performance of the proposed PSO-PID controller, a new performance criterion function is also defined. This evaluation function is intended to reflect when the maximum percentage overshoot, the settling time are given as design specifications. The ITAE evaluation function should impose a penalty if the design specifications are violated, so that the PSO algorithm satisfies the specifications when searching for the PID controller parameter. Finally, through the computer simulations, the proposed PSO-PID controller not only satisfies the given design specifications for the terminal voltage step response, but also shows better control performance than other similar recent studies.