• Title/Summary/Keyword: Peltier material

Search Result 18, Processing Time 0.03 seconds

Study of the robot gripper cooling device for a high temperature material using peltier element (열전소자를 이용한 고온용 로봇 그리퍼 냉각장치에 관한 연구)

  • Shin, Gi-Su;Hong, Sung-Duk;Kim, Gun-Su;Kwon, Soon-Jae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In the research, we developed a device for cooling the drive section of the gripper of a robot for handling the high temperature material. In this study, By using a Peltier element, the high-temperature material is not affected and driving cylinder is cooled to prevent damage due to high temperatures. Hot part of the Peltier element is towards the robot gripper. Cool part of the Peltier element is towards the driving cylinder. The heat sink portion is made to keep the cooling effect. As the performance result, cooling-test is taken, and their result is satisfy.

Measurement of Peltier Heat at the Solid/Liquid Interface and Its Application to Crystal Growth I : Theoretical Approach (고/액 계면에서의 Peltier 열 측정 및 결정성장에의 응용 I : 이론적 접근)

  • Kim, Il-Ho;Jang, Gyeong-Uk;Lee, Dong-Hui
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1108-1111
    • /
    • 1999
  • The Peltier heat absorbed or evolved at the solidiliquid interface in the unidirectional solidification process could contribute to the increase of temperature gradient in liquid and growth velocity, and the enhancement of crystal orientation. In this study, in order to measure the Peltier heat generated at the solidiliquid interface as a way of application to crystal growth, the thermoelectric effects were investigated on the temperature changes at the solid- and liquid-phase of the same material and its interface. Through the theoretical consideration, it was possible to separate sole Peltier. Thomson or Joule heat from the temperature changes due to current density, polarity, and temperature gradient. Thomson coefficient of solid- and liquid-phase as well as Peltier coefficient at the solid/liquid interface could be obtained.

  • PDF

Performance Analysis of Cooling Module using Peltier Elements (펠티어 소자를 이용한 냉방모듈 성능해석)

  • Han, Cheolheui
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.5-8
    • /
    • 2011
  • Thermal analysis of a cooling module using Peltier elements are performed using a commercial software, CFD-ACE+. A standard k-e two-equation turbulent model is applied in order to represent the turbulent shear stress. Computed values are compared with the theoretical values for the validation. The effect of mass flow rates and transferred heat amounts on the temperature distributions inside the cooling system is analyzed. It was found that the increase in the mass flow rates causes the exit temperature rise. The increase in the absorbed heat amount diminished the overall temperature on the fin surfaces. In the present analysis, the material characteristics of the Peltier element itself are not considered. In the future, the effect of the turbulence models and material characteristics will be studied in detail.

  • PDF

Optimization of Peltier Current Leads Cooled by Two-Stage Refrigerators

  • Jeong, Eun-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.94-101
    • /
    • 2006
  • A theoretical investigation to find thermodynamically optimum design conditions of conduction-cooled Peltier current leads is performed. A Peltier current lead (PCL) is composed of a thermoelectric element (TE), a metallic lead and a high temperature superconductor (HTS) lead in the order of decreasing temperature. Mathematical expressions for the minimum heat flow per unit current crossing the TE-metal interface and the minimum heat flow per unit current from the metal lead to the joint of the metal and the HTS leads are obtained. It is shown that the temperature at the TE -metal interface possesses a unique optimal value that minimizes the heat flow to the joint and that this optimal value depends on the material properties of the TE and the metallic lead but not the joint temperature nor electric current. It is also shown that there exists a unique optimal value for the joint temperature between the metal and the HTS leads that minimizes the sum of the power dissipated by ohmic heating in the current leads and the refrigerator power consumed to cool the lead, for a given length of the HTS.

Characteristics of peltier module for thermoelectric generator (열전발전용 Peltier module의 특성 측정)

  • Woo, B.C.;Lee, H.W.;Lee, D.Y.;Kim, B.S.;Schmatok, Schmatok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1552-1554
    • /
    • 1998
  • TEC(Thermoelectric conversion) is direct conversion method between thermal energy and electric energy. We studied on the mechanical, electrical and thermal properties of thermoelectric module, made experimental thermoelectric generator with BiTe material and manufactured module tester for electric-thermal energy conversion.

  • PDF

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Fabrication of active cooling e-Textiles (스마트 의류용 전도성 직물의 제조 및 특성 분석)

  • Lee, Seung-A;Lee, Chang-Hwan;Kim, Ki-Tai;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2008
  • Cooling function is definitely one of the most desirable attribute of clothing. In spite of the recent progress on phase changing material(PCM) research, the final products with sufficient amount of cooling capability have not yet to be developed in market. A new concept of cooling fabrics has been proposed by applying "Peltier effect" to textile materials. It occurs whenever electrical current flows through two dissimilar conductors; depending on the direction of current flow, the junction of the two conductors is absorbed or released heat. This effect has been tested on P-type and N-type conducting polymers. A P-type conductive polypyrrole coated fabric was synthesized by in-situ polymerization on plain weave PET to make conductive fabrics. And an N-type electrically conductive material was synthesized by treatment of MWNT and polyethyleneimine(PEI). A noticeable amount of temperature difference has been found on the fabrics.

Silicon Thermoelectric Device Technology (실리콘 열전소자 기술)

  • Jang, Moongyu
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.21-24
    • /
    • 2014
  • Thermolectric devices could convert temperature gradient into electricity (Seebeck effect) and electric power into temperature gradient across the themoelectric element (Peltier effect). $Bi_2Te_3$ has been widely used as thermoelectric material for more than 40 years, due to the superior thermoelctric characteristics. However, Bi and Te materials are predicted to face supply shortage, giving strong necessity for the development of new thermoelctric materials. Based on the theoretical prediction, nanostructure are expected to give dramatic enhnacement of thermoelectirc characteristics by controlling phonon propagation. Thus, silicon, which had been considered as improper material for thermoelectricity, is now being considered as strong cadidate material for thermoelectricity. This review will focus on the nanotechnology applied research activities in silicon as thermoelectric materials.

The Development of Refrigerator Using the Thermoelectric semiconductor (열전반도체를 이용한 냉장고의 개발)

  • Chung, Yong-Ho;Lee, Woo-Sun;Lee, Young-Jin;Kim, Sang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.50-53
    • /
    • 2001
  • The thermoelectric refrigeration technologies have no moving parts. compressor, or piping required. In this study, the basic capacity of thermoelectric devices and development on some thermoelectric refrigerator were reviewed and basic technical concepts related with many kinds of thermoelectric materials were discussed. Especially the result of performance test on thermoelectric refrigerator whose minimum temperature of $-2^{\circ}C$ was introduced briefly.

  • PDF