• Title/Summary/Keyword: Pellet production

Search Result 219, Processing Time 0.031 seconds

KINETIC MODELING STUDY OF A VOLOXIDATION FOR THE PRODUCTION OF U3O8 POWDER FROM A UO2 PELLET

  • Jeong, Sang-Mun;Hur, Jin-Mok;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1073-1078
    • /
    • 2009
  • A kinetic model for the oxidation of a $UO_2$ pellet to $U_3O_8$ powder has been suggested by considering the mass transfer and the diffusion of oxygen molecules. The kinetic parameters were estimated by a fitting of the experimental data. The activation energies for the chemical reaction and the product layer diffusion were calculated from the kinetic model. The oxidation conversion of a $UO_2$ pellet was simulated at various operating conditions. The suggested model explains the oxidation behavior of $UO_2$ well.

Influence of Blast Furnace Slag Addition on the Strength of Cold Bonded Pellet (고로 급냉슬래그를 첨가한 비소성 펠릿의 강도거동)

  • 피용진;반봉찬;김태동
    • Resources Recycling
    • /
    • v.8 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Utilization of iron bearing dusts has been needed agglomeration prior to use as a burden in blast furnace The cold bonded pellet process using iron bearing dusts has been developed as an alternative to the conventional heat indurated pelletizing process. Partial substitution of cements with cheaper materials would decrease the production cost of pellet. This paper discusses the strength of pellet containing blast furnace slag as a bonding material in pelletizing a cold bonded agglomerates. Depending upon the quality, half of the cement required may be replaced by slag in the pellets with a strength of around 150 kgf. Some of the physicochemical properties of the bonding materials are also investigated in the present work.

  • PDF

Synthesis of Pellet-Type Red Mud Adsorbents for Removal of Heavy Metal Ions (중금속이온제거를 위한 입자형 적니흡착제의 제조)

  • 김정식;한상원;황인국;배재흠;최우진
    • Resources Recycling
    • /
    • v.9 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Red mud is generated as a by-product in the production of $Al(OH)_{3}/Al_2O_3$ from bauxite ore. In this study the pellet-type adsorbents have been made from the red mud, and their adsorption capacities of heavy metal ions have been tested. The pellet-type adsorbents were synthesized to utilize the excellent adsorption capacity of the powder-type adsorbent for industrial application. The pellet-type adsorbents were prepared by mixing several kinds of additives with the red mud. It is found that the pellet-type adsorbent, made by sintering a mixture of red mud (96.0 wt%), polypropylene (2.5%), fly ash (0.5 w%), and sodium metasilicate(1.0 wt%) at $1200^{\circ}C$ for 30 minutes, has the highest adsorption capacity. in this work, the two kinds of pellet-type adsorbents (bead-type, crushed-type) were prepared. The crushed-type adsorbent was found to show a better adsorption/desorption performance than the bead-type adsorbent. The crushed-type adsorbent showed a good adsorption capacity of $Pb^{2+}$ like the powder-type adsorbent.

  • PDF

Basic Study on Oversea Biomass Energy Resources 1 - Palm Biomass (해외 바이오매스 에너지자원 확보를 위한 기초조사 1 - 팜 바이오매스)

  • Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.439-449
    • /
    • 2014
  • RPS (Renewable Portfolio Standard) has increased wood pellet demand dramatically in recent years in Korea where self-supply rate of wood pellet is not more than 10%. However global production capacity of wood pellet is prospected to be unable to meet the global demand after 2020. Therefore it is urgently needed to develop new sustainable biomass energy resources which can replace wood pellet at lower cost. As a result of this study EFB (empty fruit bunch) and MF (mesocarp fiber), the representative solid palm biomass, are estimated to be generated at the rate of 20 and 28 million tons per year (based on 10% moisture content) in Malaysia and Indonesia, respectively in 2012. Total annual generation rate of EFB and MF is estimated as 48 million tons per year only in Malaysia and Indonesia in 2012. With calorific value of over 90% of wood pellet EFB is expected to be a excellent biomass energy resource which can replace wood pellet. EFB can be utilized as fuel for power generation or industrial purpose. However EFB may not be a proper fuel for domestic and greenhouse heating because of its high ash content.

Nutrient Intake and Digestibility of Fresh, Ensiled and Pelleted Oil Palm (Elaeis guineensis) Frond by Goats

  • Dahlan, I.;Islam, M.;Rajion, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.10
    • /
    • pp.1407-1413
    • /
    • 2000
  • Oil palm frond (OPF) is a new non-conventional fibrous feed for ruminants. Evaluation on the nutritive values and digestibility of OPF was carried out using goats. In a completely randomised design, 20 local male goats were assigned to evaluate fresh and different types of processed OPF. A 60 day feeding trial was done to determine the digestible nutrient intake of fresh, ensiled and pelleted OPF and its response on live weight gain of goat. The pelleting of OPF increased (p<0.05) intake compared to fresh or ensiled OPF. The OPF based mixed pellet (50% OPF with 15% palm kernel cake, 6% rice bran, 6% soybean hull, 15% molasses, 2% fishmeal, 4% urea, 1.5% mineral mixture and 0.5% common salt) increased (p<0.05) nutrient intake, digestibility and reduced feed refusals. The mixed pellet also increased digestible dry matter intake (DDMI) and digestible organic matter intake (DOMI) at 80% and 63% level respectively than the fresh OPF. The increased digestible nutrient intake on the OPF based mixed pellet, resulted in increased live weight gain of goats. Furthermore, OPF has a good potential as a roughage source when it is used with concentrate supplement. OPF based formulated feed in a pelleted form could be used as a complete feed for intensive production of goat and other ruminants.

Production of Fine Tantalum Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 미세 Ta 분말 제조)

  • Park Il;Lee Chuel Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.719-724
    • /
    • 2004
  • Production of fine tantalum powder by calciothermic reduction of tantalum oxides ($Ta_{2}O_5$) pellet through an electronically mediated reaction (EMR) has been investigated. $Ta_{2}O_5$ pellet feed and reductant calcium-nickel (Ca-Ni) alloy were charged into electronically isolated locations in a molten $CaCl_2$ bath. The current flow through an external path between the feed (cathode) and reductant (anode) locations was monitored. The current approximately 4.7A was measured during the reaction in the external circuit connecting cathode and anode location. Tantalum powder with approximately 99 $mass\%$ purity was readily obtained after each experiment. Tantalum powder by EMR using $Ta_{2}O_5$ pellet feed was fine compared with that of metal powder by metallothermic reduction and EMR using $Ta_{2}O_5$ powder feed.

Effects of Morphology and Rheology on Neo-fructosyltransferase Production by Penicillium citrinum

  • Lim, Jung-Soo;Lee, Jong-Ho;Kim, Jung-Mo;Park, Seung-Won;Kim, Seung-Wook
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2006
  • In this study, we investigated the relationship between the morphology and the rheological properties of Penicillium citrinum to improve the production of neo-fructosyltransferase (neo-FTase). In a 2.5 L bioreactor culture of P. citrinum, it was observed that agitation speed and aeration rate had significant effects on the production of neo-FTase and that maximum cell mass and neo-FTase production obtained at 500 rpm and 1.5vvm were 8.14 g/L and $53.2{\times}10^{-3} U/mL$, respectively. Cell mass and neo-FTase production increased to 91.53 and 25.17%, respectively. In the morphology and rheology studies, P. citrinum showed a typical pellet morphology that was explained by a shaving mechanism; this phenomenon was significantly affected by carbon sources. The rheology of neo-FTase fermentation by P. citrinum was dependent on cell growth and fungal morphology.

Feasibility test for Solidified Fuel with Cow Manure (고체연료화 방법을 적용한 우분 처리 가능성 평가)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.112-119
    • /
    • 2017
  • In this study, the availability of cow manure as raw material for solid fuel production was investigated. Since the water content of the cow manure was too high, it was dewatered using a laboratory hydraulic compressure ($11.3kg/cm^2$). The moisture content of the cow manure decreased from 82.01% to 73.36 wt.%. The dewatered cow manure was homogenized by the experimental apparatus and then put into the rotating cylindrical apparatus. From the consecutive processes, the cow ball-shaped pellet which size ranged from 3.0 to 25.0 mm was produced. The major factor for making palletized fuel from cow manure was the moisture content. Based on the experimental data, the moisture content of cow manure for pelletizing cow manure was identified as 65~75 wt.%. When the moisture content of the cow manure was lower than 30 wt.%, the diameter of the pellets maded from cow manure was smaller than 3 mm. On the other hand, when the water content of the cow manure was higher than 75 wt/%, the diameter of the processed pellets tended to be larger than 25 mm. The characteristics of the processed cow manure pellets was analyzed to be in accordance with the livestock solid fuel quality standard. The pyrolysis characteristic of the pellet was analyzed by raising the heating temperature of the experimental equipment from 200 to $900^{\circ}C$. The mass change between of 20 and $130^{\circ}C$ corresponds to the amount of moisture contained in the cow manure. The amount of moisture was about 15% of the total weight of cow manure samples. The cow manure pellet was thermally stable up to $280^{\circ}C$. It can be interpreted that combustion of cow manure pellet does not occur until the surface temperature reaches $280^{\circ}C$. The mass change of pellet between of 280 and $450^{\circ}C$ was considered to be due to the vaporization of volatile organic compounds (VOCs) present in the cow manure pellet. The maximum production of VOCs was showed near $330^{\circ}C$.

Pellet Fuel from Wood Biomass (목질바이오매스를 이용한 펠릿연료의 제조)

  • Han, Gyu-Seong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.521-524
    • /
    • 2006
  • Recently, densified pollet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of several species of wood to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess pellet fuels Hot-press process was adopted for compact ion of sawdust and compaction was performed under prescribed condition. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over $1.2g/cm^3$ and below 0.5%, respectively. When the press-temperature is over $60^{\circ}C$ densified fuels with density over $1.2g/cm^3$ and with fines below 0.5% can be produced. And the pressure over $1000kgf/cm^2$ was effect ive for this production.

  • PDF

UK Case Study for Sustainable Forest Biomass Policy Development of South Korea (지속가능한 산림바이오매스 정책개발을 위한 영국사례 연구)

  • Lee, Seung-Rok;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • This study investigated the reference case in the UK where legality and sustainability were systematically established for forest biomass represented by wood pellets. The UK is the country that best utilizes the trade value of wood pellets based on sustainability, with bioenergy accounting for 31% of total renewable energy production. The UK imported wood pellet, estimated 8,697 thousand tons in 2019. The UK government has continuously improved the renewable generation policy system to ensure the sustainability of wood pellets. The weighted average greenhouse gas emissions of a UK biomass power plant that received a Renewable Obligation Certificate (ROC) in 2018-19 was 26.71 gCO2e/MJ. These power plants are expected to meet the upper limit of 72.2 gCO2e/MJ by 2025. To issue an ROC, the biomass power plant must demonstrate that 70% of its total biofuel usage is sustainable. The UK uses the Sustainable Biomass Program (SBP) certification system, which is gradually expanding to other European countries, to prove the sustainability of biomass energy fuels. Global wood pellet production with SBP certification in 2019 was 10.5 Mt. This trend has significant implications for introducing additional sustainability into the wood pellet policy of South Korea.