• Title/Summary/Keyword: Pedigree

Search Result 283, Processing Time 0.025 seconds

A study of the genomic estimated breeding value and accuracy using genotypes in Hanwoo steer (Korean cattle)

  • Eun Ho, Kim;Du Won, Sun;Ho Chan, Kang;Ji Yeong, Kim;Cheol Hyun, Myung;Doo Ho, Lee;Seung Hwan, Lee;Hyun Tae, Lim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.681-691
    • /
    • 2021
  • The estimated breeding value (EBV) and accuracy of Hanwoo steer (Korean cattle) is an indicator that can predict the slaughter time in the future and carcass performance outcomes. Recently, studies using pedigrees and genotypes are being actively conducted to improve the accuracy of the EBV. In this study, the pedigree and genotype of 46 steers obtained from livestock farm A in Gyeongnam were used for a pedigree best linear unbiased prediction (PBLUP) and a genomic best linear unbiased prediction (GBLUP) to estimate and analyze the breeding value and accuracy of the carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS). PBLUP estimated the EBV and accuracy by constructing a numeric relationship matrix (NRM) from the 46 steers and reference population I (545,483 heads) with the pedigree and phenotype. GBLUP estimated genomic EBV (GEBV) and accuracy by constructing a genomic relationship matrix (GRM) from the 46 steers and reference population II (16,972 heads) with the genotype and phenotype. As a result, in the order of CWT, EMA, BFT, and MS, the accuracy levels of PBLUP were 0.531, 0.519, 0.524 and 0.530, while the accuracy outcomes of GBLUP were 0.799, 0.779, 0.768, and 0.810. The accuracy estimated by GBLUP was 50.1 - 53.1% higher than that estimated by PBLUP. GEBV estimated with the genotype is expected to show higher accuracy than the EBV calculated using only the pedigree and is thus expected to be used as basic data for genomic selection in the future.

Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study

  • Kim, JongJoo;Farnir, Frederic
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1702-1705
    • /
    • 2006
  • A simulation study was conducted to evaluate a fine-mapping method exploiting population-wide linkage disequilibrium. Data were simulated according to the pedigree structure based on a large paternal half-sib family population with a total of 1,034 or 2,068 progeny. Twenty autosomes of 100 cM were generated with 5 cM or 1 cM marker intervals for all founder individuals in the pedigree, and marker alleles and a number of quantitative trait loci (QTL) explaining a total of 70% phenotypic variance were generated and randomly assigned across the whole chromosomes, assuming linkage equilibrium between the markers. The founder chromosomes were then descended through the pedigree to the current offspring generation, including recombinants that were generated by recombination between adjacent markers. Power to detect QTL was high for the QTL with at least moderate size, which was more pronounced with larger sample size and denser marker map. However, sample size contributed much more significantly to power to detect QTL than map density to the precise estimate of QTL position. No QTL was detected on the test chromosomes in which QTL was not assigned, which did not allow detection of false positive QTL. For the multiple QTL that were closely located, the estimates of the QTL positions were biased, except when the QTL were located on the right marker positions. Our fine mapping simulation results indicate that construction of dense maps and large sample size is needed to increase power to detect QTL and mapping precision for QTL position.

Canine Renal Failure Caused by Ochratoxin A and Citrinin in the Commercial Dog Food (시판 사료에 오염된 Ochratoxin A와 Citrinin에 의한 개의 신부전)

  • Ahn, So-Jeo;Jeoung, Seok-Young;Lim, Man-Su;Park, Son-Il;Han, Jeong-Hee;Kim, Doo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • Five dogs with renal failure were referred to the Veterinary Medical Teaching Hospital at Kangwon National University. These dogs had the common history of consumption of Pedigree dry dog food produced in Thailand plant for over 1 month. The dogs showed anorexia, emaciation, vomiting, and polydipsia/polyuria. And in one severely affected dog, bloody diarrhea and hypothermia were seen. The remarkable clinicopathological signs were high value of BUN and creatinine. In some dogs, GGT, phosphorus and lipase were increased. However, no significant changes of complete blood count were found. In urinalysis, hematuria, low specific gravity urine, proteinuria, and calcium oxalate-like crystals were observed. Two severely affected dogs were died. The remained dogs were recovered gradually after change of dog food and supportive therapy. Pathological findings were seen typically in kidneys. Renal atrophy, congestion of the glomerular capillary, and diffuse degeneration, necrosis, dystrophic calcification and regeneration in the tubular epithelium were seen. Yellowish brown fluorolucent laminated materials or particles were quite often found in the lumina of the necrotizing renal tubules of cortex and medulla. Proliferation of fibrous tissue in the interstitium was also seen. By the mycotoxin analysis of the Pedigree dry dog food, ochratoxin A (OTA) and citrinin were detected as much as the concentration of 372.8 ppb and 8.3 ppb, respectively. The final diagnosis of renal failure caused by OTA and citrinin toxicosis was made on the basis of history takings, clinical signs, clinicopathological and pathological findings, and analysis of mycotoxins.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

Sequential 3D Mesh Coding using Vertex Pedigree based on Wave Partitioning (파동분할 기반의 꼭지점 계보를 이용한 순차적 삼차원 메쉬 부호화)

  • 김태완;안정환;양창모;호요성
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.213-218
    • /
    • 2001
  • 본 논문에서는 파동분할(Wavepartitioning) 방식을 기반으로 꼭지점들간의 특징적인 관계(Vertex Pedigree)를 이용한 순차적(Sequential) 메쉬 부호화 방식을 제안한다. 파동분할 방식은 호수에 물방울이 퍼져 나가는 자연 원리를 이용하여 초기 삼각형의 주위에 삼각형을 덧붙여 가면서 하나의 SPB(Small Processing Block)을 만들어내는 방식이다. 이 방식을 이용하여 하나의 모델을 서로 독립적인 SPB로 분할하고, 각각의 SPB내에서 초기 삼각형을 중심으로 그것에 덧붙여진 삼각형에 의해 만들어진 원 또는 반원을 찾는다. 또한, 그 원주를 따라 순차적으로 꼭지점을 구하면 각각의 꼭지점들은 서로의 관계에 따라 일정한 패턴으로 늘어서게 되고, 이것을 이용하여 연결성 정보 없이 부가 정보만으로 모델을 순차적으로 무손실 부호화한다.

  • PDF

Standardization and Usefulness of ISAG Microsatellite Markers for Individual Identification and Parentage Verification in Horse Breeds (말에서 개체식별 및 친자확인을 위한 ISAG Microsatellite Marker의 유용성 및 표준화)

  • Kwon, Do-Yeon;Cho, Gil-Jae
    • Journal of Veterinary Clinics
    • /
    • v.26 no.3
    • /
    • pp.220-225
    • /
    • 2009
  • The present study demonstrates a new approach that enables effective horse parentage testing using 22 ISAG microsatellite markers involving 6 heads of Thoroughbred horse(TB) and non-TB. In the comparison allele distribution between these horses, the alleles found in the TB were numerously detected in the non-TB. As results, we confirmed that these ISAG microsatellite markers might apply the pedigree registration of Korean native horse(Jeju horse).

Prediction Models for Racing Performance of Domestic Progeny of Thoroughbreds

  • Lee, Jeong-Ran;Lee, Jin-Woo;Kim, Hee-Bal;Oh, Hee-Seok
    • Journal of Animal Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.459-466
    • /
    • 2010
  • In this study, we suggest an objective standard in selection of candidate horse mates. Korea Racing Authority provided racing records and pedigree information of 44 sires and 954 dams. The datasets were used to predict Racing Indices represented by the averages of earnings earned by offspring for each dam and sire that indicate the racing performance of its domestic progeny. Proportion of wins and second places to the number of taken races and the mean of distances for the won races of a sire were significant factors in linear model with minimum prediction errors. For dam, those factors were the average of earned money per race, number of outstanding broodmares in pedigree, and the comparable index which indicates the relative affinity with its mate. We can use the resultant model for a horse mate by choosing one of the candidates with the largest predicted value for hypothetical offspring.

Inbreeding Levels and Pedigree Structure of Landrace, Yorkshire and Duroc Populations of Major Swine Breeding Farms in Republic of Korea

  • Kim, Sidong;Salces, Agapita;Min, Hongrip;Cho, Kwanghyun;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1217-1224
    • /
    • 2006
  • The registration data of 15 populations from nine major swine breeding farms were investigated to check levels of inbreeding and the current status of pedigree structures of breeding stocks. The average rate of inbreeding per generation was 0.208%, 0.209%, 0.098%, 0.307% and 0.071% for farms D, S, K, H, and Y in Duroc, 0.071%, 0.188%, 0.685%, 0.336%, and 0.449% for farms S, H, C, J, and W in Landrace, and 0.243%, 0.123%, 0.103%, 0.165%, and 0.286% for farms D, S, G, H, and J in Yorkshire, respectively. The average inbreeding rate was highest for Landrace, intermediate for Yorkshire, and lowest for Duroc farms. In Landrace and Yorkshire populations there were few immigrant animals per generation. In Duroc, however, there were quite large numbers of immigrant animals per generation compared to other breeds. The effective population sizes calculated from the average rate of inbreeding were distributed between 73.0 and 708.7. Specific values were 204.8, 239.7, 508.8, 163.0 and 708.2 for farms D, S, K, H, and Y in Duroc, 708.7, 266.5, 73.0, 148.9, and 111.3 for farms S, H, C, J, and W in Landrace, and 205.5, 406.0, 486.9, 302.6 and 175.0 for farms D, S, G, H, and J in Yorkshire, respectively. The values were acceptable for natural selection for fitness and inbreeding depression. The results showed that there was no cause for concern over the current inbreeding level of major swine breeding farm populations and the inbreeding level was within an acceptable range.

Genetic Structure and Composition of Genetic Diversity in the Kouchi Sub-breed of the Japanese Brown Cattle Population

  • Honda, Takeshi;Fujii, Toshihide;Mukai, Fumio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1631-1635
    • /
    • 2007
  • Japanese Brown cattle, one of the four domestic beef breeds in Japan, are suffering from numerical reduction due to economic pressure from profitable breeds. In this study, all the reproductive cows in the Kouchi sub-breed of the Japanese Brown cattle that were alive in July 2005 were investigated by pedigree analysis to clarify genetic structure and composition of genetic variability. In addition, genetically important individuals for the maintenance of genetic variability of the sub-breed were also identified through the core set method. The number of cows analyzed was 1,349. Their pedigrees were traced back to ancestors born around 1940, and pedigree records of 13,157 animals were used for the analysis. Principal component analysis was performed on the relationship matrix of the cows, and their factor loadings were plotted on a three-dimensional diagram. According to their spatial positions in the diagram, all the cows were subdivided into five genetically distinctive subpopulations of 131 to 437 animals. Genetic diversity of the whole sub-breed, which is estimated to be 0.901, was decomposed into 0.856 and 0.045 of within-subpopulation and between-subpopulation components. Recalculation of genetic diversity after removal of one or several subpopulations from the five subpopulations suggested that three of them were genetically important for the maintenance of genetic variability of the sub-breed. Applying the core set method to all the cows, maximum attainable genetic diversity was estimated to be 0.949, and optimal genetic contributions assigned to each cow supported the previous results indicating relative importance of the three subpopulations as useful genetic materials.