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ABSTRACT

In this study, we suggest an objective standard in selection of candidate horse mates. Korea Racing Authority provided racing 
records and pedigree information of 44 sires and 954 dams. The datasets were used to predict Racing Indices represented by the 
averages of earnings earned by offspring for each dam and sire that indicate the racing performance of its domestic progeny. 
Proportion of wins and second places to the number of taken races and the mean of distances for the won races of a sire were 
significant factors in linear model with minimum prediction errors. For dam, those factors were the average of earned money per 
race, number of outstanding broodmares in pedigree, and the comparable index which indicates the relative affinity with its mate. 
We can use the resultant model for a horse mate by choosing one of the candidates with the largest predicted value for 
hypothetical offspring.
(Key words : Cross-validation, Horse breeding, Linear model, Statistical learning, Thoroughbred)

INTRODUCTION

The male parent of a horse, a stallion, is commonly 
known as the sire and the female parent, the mare, is called 
the dam or broodmare. Both are genetically important, as 
each parent provides half of the genetic makeup of the 
ensuing offspring. They often are chosen in hopes of passing 
down their outstanding physical or athletic attributes, or 
desirable ancestry.

The Thoroughbred is a horse breed best known for its use 
in horse racing because it has agility, speed and spirit. 
Thoroughbreds have been bred exclusively for racing in 
England since Tudor times and Thoroughbred horse racing is 
now a worldwide sport and huge industry. About 110,000 
foals of Thoroughbreds are registered each year all over the 
world (The Jockey Club, 2008). In Korea, about 1,000 foals 
of Thoroughbreds are registered each year by the report of 
International Federation of Horseracing Authorities (2007). 
Korea Racing Authority (KRA), the nation’s authorized horse 
racing institute, is entitled to restore the national identity of 
horse racing. Breeding goal of KRA is to produce noble, 
correct and durable racing Thoroughbreds, which are 
internationally competitive through their temperament, racing 

ability and good movements. Thus, related research is in 
demand by the industry.

There are many previous studies which estimate genetic 
parameters and evaluate fixed effects relative to racing 
performance (Lee et al., 1995; Park and Lee, 1999; Bakhtiari 
and Kashan, 2009). However, since those literatures focused 
on estimating the breeding values using animal mixed 
models, the proper use of statistical analysis has not been 
applied extensively to identifying the linkage of offspring 
with their parents for specific characteristics in individuals of 
differing phenotypes that most affect the progeny’s racing 
performance. The goal of this study is to select significant 
factors in racing and pedigree records of each sire and dam, 
and to predict the offspring’s racing performance in the 
statistical learning framework.

MATERIALS AND METHODS

1. Data structures and terminologies

There are observations of 44 sires and 954 dams with 
domestic and foreign records, but those for whose offspring 
have domestic racing records only. This data, covered in the 
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Table 1. Data structure for sire records

Type Related trait Variable name Descriptions

Response variable
Offspring
performance

API Average of RI for all offspring by each sire.

Candidate explanatory
variables

Relative affinity CI
Comparable Index: API for offspring out of progeny by the chosen 
sire and mated dams when bred to all other sires.

Excellence in
racing

WIN_R Proportion of wins to the number of taken races.

DWIN_R Proportion of wins and second places to the number of taken races.

AVG_PRZ Average of earned money per each taken races.

Aptitude in 
racing

AWD Mean of distances for the won races.

ROAD Track aptitude coded as 1 for turf and 2 for dirt.

Prematurity SEC_PRZ Average of earned money per each taken race at two years old.

Quality in 
pedigree

GRD_AEI AEI of grandsire.

BMS_AEI AEI of broodmare sire.

DYIELD Number of outstanding broodmares in pedigree for four generations.

SW_PED Number of stakes winners in grand-dam or siblings of the sire.

period of 20 years from 1990 to 2009, is provided by KRA 
for an analysis. We focus on finding out significant factors 
in the records of each sire and dam that can be used to 
predict the quality of its hypothetical offspring. A component 
of the response variable is the offspring’s performance 
presented in terms of Racing Indices (RI). Each offspring’s 
RI is calculated by the ratio of its mean earnings per race 
over that of its contemporary group. The contemporary group 
is specified based on its element offspring’s racing 
information in Korea defined by a complex scheme of 
KRA’s private customary rules, which consists of age (2, 3, 
4 or over 5), country of origin (domestic or foreign), 
hippodrome (Seoul or Busan), and the year of the race is 
held. The value of RI greater than one indicates that the 
offspring has earned more the mean earnings per race than 
the average of that earned by its contemporary group. We 
obtain the response variable as a form of Average Perfor- 
mance Indices (API) per individual sire or dam by taking 
averages of RI from its entire offspring.

Short descriptions of all candidate explanatory variables 
are presented in Table 1 for sire records and Table 2 for 
dam with the abbreviated variable names to be used in the 
rest of this article. The input variables can be explained 
based on what kind of traits they express in each sire and 
dam to be assessed. Because phenotypes of an individual sire 
or dam are determined by the expression of an organism’s 
genes as well as the influence of environmental factors and 

the interactions between the two, each explanatory variable 
can be interpreted in a relationship with genetic information 
or aptitude in racing. For example, CI in Table 1 can be 
interpreted as a relative affinity with its mate of a sire or 
dam. If the offspring out of progeny produced by other sires 
with dams who are mated to the chosen sire performed well, 
it is possible that its own offspring result in good returns. 
This indicates that the relative affinity of a sire or dam with 
its mates can be comparable to the performance of its own 
offspring. Therefore, we additionally displayed possible traits 
related to each candidate explanatory variables in those 
tables.

More detailed descriptions for some candidates of explanatory 
variables presented in Table 1 are as follows. Average 
Earning Index (AEI) is computed by taking the yearly 
average of a proportion of the mean of earned money at 
each year per offspring to that of entire runners at the year. 
The meaning of ‘outstanding’ in the description of DYIELD 
indicates that a dam yielded offspring of grand or special 
race winners under the condition of having 70% of WIN_R 
over at least three taken races. The types of races such as 
grand, special or stakes are determined by the magnitude of 
total prize money, which are designated by KRA or other 
sponsors.

Additional explanations for some candidates of input 
variables displayed in Table 2 are as follows. The seven 
categories in CLASS are coded as 1 for winners of the 
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Table 2. Data structure for dam records

Type Related trait Variable name Descriptions

Response variable
Offspring 
performance

API Average of RI for all offspring by each dam.

Candidate explanatory 
variables

Relative affinity CI
Comparable Index: API for offspring out of progeny by the chosen 
dam and mated sires when bred to all other dams.

Excellence in 
racing

CLASS Coded index of racing ability categorized by type of races.

AVG_PRZ Average of earned money per each taken races.

Aptitude in 
racing

AWD Mean of distances for the won races.

Genetic aptitude INBREED Coefficient of inbreeding.

Prematurity SEC_PERF Classification of racing performance at two years old.

Quality in 
pedigree

BMS_PRC Average of mating fees paid to broodmare sire.

BMS_AWD AWD of broodmare sire.

BMS_CLS CLASS of broodmare sire.

DYIELD Number of outstanding broodmares in pedigree for four generations.

SW_PED Number of stakes winners in grand-dam or siblings of the dam.

grand races, 2 for second or third places of the grand races, 
3 for stakes winners or fourth places of the grand races, 4 
for ones have earnings in stakes races except winners, 5 for 
winners of races except grand and stakes, 6 for ones had 
taken races at least once, and 7 for those never had taken 
races, respectively. Inbreeding is a genetic term that refers to 
reproduction as a result of the sexual intercourse of two 
animals which are genetically related to each other. If the 
relationship is a close one or it is practiced repeatedly, 
inbreeding can increase the chances of offspring being 
affected by recessive or deleterious traits. The percentage of 
chances for two alleles to be identical by descent is called 
inbreeding coefficient. For more details in calculation of 
inbreeding coefficient, refer Wright (1922). The three cate- 
gories of SEC_PERF are coded as 1 for winners, 2 for ones 
had taken races at least once, and 3 for those never had 
taken races, respectively. Because prize money have the unit 
of 1,000 Korean Won (KRW), other currencies used in the 
representation of mating prices for BMS_PRC or AEI are 
converted to KRW based on current exchange rates at the 
corresponding time.

2. Preprocessing

There were missing values of 717 (75.16%) observations 
for BMS_PRC, 204 (21.38%) for BMS_AWD, 58 (6.08%) for 

AVG_PRZ, and 243 (25.47%) for AWD among all candidate 
explanatory variables in dam data. Because the missing 
proportion of BMS_PRC was huge, the factor itself was 
excluded in the analysis. Factors with missing values of over 
twenty percents, i.e., BMS_AWD and AWD were also not 
included in models because they were not significant (P > 
0.05) in the preliminary testing on datasets with no missing 
values. Outliers positioned over 99% of entire data were also 
eliminated. Therefore, we conducted our analysis on 873 
records of dam resulted from the removed observations with 
those missing values in variables AVG_PRZ, and outliers. 
There were no missing values in records of sires. We 
standardized all factors by converting to z-scores of variables
(which are derived by subtracting the mean from an 
individual raw score and then dividing the difference by the 
standard deviation) because the scales of them were all 
different. For those variables related to average earnings, we 
took the natural logarithm (ln) after increasing them by one 
to normalize because there were too many zeros and extreme 
values.

3. Framework of statistical learning

The science of learning plays a key role in the fields of 
statistics, data mining and artificial intelligence, intersecting 
with areas of engineering and other disciplines. It is about 
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learning from data. In a typical scenario, we have an 
outcome measurement, usually quantitative or categorical, that 
we wish to predict based on a set of inputs, called features. 
We have a training set of data, in which we observe the 
outcome and feature. Using this data we build a prediction 
model, or learner, which will enable us to predict the 
outcome for new unseen objects. A good learner is one that 
accurately predicts such an outcome, and the performance of 
a learner can be validated in a set of test data. Various 
aspects and examples of statistical learning can be found in 
Hastie et al. (2009).

We denote a sample of input-output pairs (Xi, Yi), i=1, , 
n, where Xi = (Xi1, ,Xid) denotes a d-dimensional covariate 
vector and Yi denotes a continuous response. Each method 
we will use has complex parameters, and those parameters 
are chosen to minimize an estimate of prediction error based 
on tenfold cross-validation (CV). Tenfold CV works by 
dividing the training data randomly into ten equal parts. Our 
learning methods are fit to nine-tenths of the data, and 
prediction errors are computed on the remaining one-tenth. 
This is done in turn for each one-tenth of the data, and the 
ten prediction error estimates are averaged. The measure of 
prediction error to minimize is the predicted mean squares 
error (PMSE) defined as follows:

  PMSEt =


  



(Yi, Ŷi
( nt))2 

where Yi is the ith observation of the test set (size of nt), 
which indicates the true value of the response, and Ŷi

( nt) is 
the predicted value for test set covariates obtained in the 
model from training set. Here, t equals ten if tenfold CV is 
used. For a simple notation of the formula, we denote CVk 
for the mean of PMSEt, t = 1, , k. Because there are 44 
observations of sires and 873 preprocessed records of dams, 
we partition each datasets into 40 vs. 4 and 776 vs. 97, 
respectively, to make equally spaced folds for the 
convenience of computation. The consequence is that we 
used eleven-fold CV for sire data and nine-fold CV for dam 
data. We can capture whether the model is stable, and detect 
the most accurate model as well by changing partitions in 
the nine-fold or eleven-fold CV.

The three different prediction models we present in this  
article are obtained by applying the linear regression model, 
tree-based method, and an ensemble method called bagging 
to datasets. Validations of proposed models are represented 
in terms of PMSE. Application and evaluation of the 

proposed methods are implemented by R, a free software 
environment for statistical computing and graphics obtained 
from the Comprehensive R Archive Network (CRAN).

4. Linear model and variable selection

Linear regression model assumes that the regression 
function E (Y X) is linear in the parameter βjs (called 
coefficients, which is unknown constants to be estimated 
from data) such as:

Y = E (Y X) + ε = βo + Σd
j = 1Xjβj + ε,

where, the error ε is assumed to be a Gaussian random 
variable with mean zero and variance σ2. It is simple, and 
often provides an adequate and interpretable description of 
how the inputs affect the output. For example, if we get an 
estimate  of βj as a constant 2, then we can interpret that 
the one unit increment in Xj results in 2 unit increment in 
the expected value of the response. For prediction purposes, 
it can sometimes outperform complicated nonlinear models, 
especially in situations with small numbers of training cases 
or sparse data.

We conduct variable selection to obtain a stable predictor 
for any changes in datasets by reducing model complexity. 
We first identify significant factors among the categorical 
variables with levels more than two by a single factor 
ANOVA. And then, we apply a well-known stepwise 
variable selection procedure for the linear model in 
combination with Akaike Information Criterion (AIC; Akaike, 
1973) for fifty times, and count the numbers of being 
selected for each variable. Among the chosen variables, we 
make combinations of those candidate explanatory variables 
to construct possible linear models, and find the best 
combination that provides the smallest PMSE.

5. Tree-based method

Regression tree is a nonparametric regression method that 
partitions the feature space of X into a set of rectangles and 
takes the average of the response values in each rectangle as 
an estimate of the regression function in that region. It is 
conceptually simple and powerful. We use the procedure 
called Classification and Regression Trees (CART), which is 
a popular method for tree-based regression. Its construction 
is based on recursive binary partitioning of the feature space 
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with additional growing and pruning stages. A key advantage 
of the recursive binary tree is its interpretability, because the 
partition of feature space is fully described by a single tree 
and the representation works in the same way with more 
than two inputs.

For each variable Xj, define

R1 (j, s) = {X : Xj s} and R2 (j, s) = {X : Xj > s},

which are the two regions split by the variable j at the 
point s. Also, define

  (j, s) = average {Yi Xi R1 (j, s)} and 
    (j, s) = average {Yi Xi R2 (j, s)}.

In growing stages, we find (j, s) that minimizes the residual 
sum of squares of the best constant fit such that:

Σi:Xi R1 (j, s) {Yi
 (j, s)}2 + Σi:Xi R2 (j, s) {Yi

 (j, s)}2. 

And then repeat the splitting process by partitioning the 
feature space into the two resulting regions until some 
stopping rule is applied. Too large trees with too many 
terminal nodes may overfit the data, while too small trees 
may not capture the important structure of the regression 
function. Therefore, we chop off the last grown node first 
and so on, and then obtain a sub-tree by pruning a tree 
given from the growing stage. In contrast to the previous 
linear model, there is no need to select significant variables 
in advance. For more details in selection of the best sub-tree 
that minimizes the cost complexity criterion, see Breiman et 
al. (1984) and Ripley (1996).

6. Ensemble method

Ensemble is a generic term for methods of constructing 
many learners and combining them to make a highly 
accurate learner. Here, we use an example called bagging 
(i.e., bootstrap aggregating) introduced by Breiman (1996). 
Empirically, ensemble methods perform better than the best 
single learner, particularly when the learner is unstable. 
Because the bootstrap is a way of assessing the accuracy of 
estimation or prediction, bagging can serve as a method of 
improving prediction.

Let f ( , S) denote a regression estimate based on a 
sample S. We draw bootstrap samples (by random sampling 

with replacement) S (b), b = 1, , B, from the training sample. 
The bagging estimate is computed by

fbag (X) = 

B

b=1 f (X, S (b)).

Here, we choose the base learner as the tree-based 
estimate. It can be seen in the formula of fbag (X) that the 
interpretation of the model is not simple though the 
performance might be better than that of a single learner.

RESULTS & DISCUSSION

1. Sire assessment model

Among fifty times of the stepwise variable selection 
procedure, only DWIN_R (96%), AVG_PRZ (38%), AWD 
(38%), and SEC_PRZ (30%) are significant (P < 0.05) in 
linear models for sire records. Though the importance of the 
variable DWIN_R is obvious, we further need to compare 
the model performance for all combinations of the rest three 
variables. Because the selected percentage of variables 
AVG_PRZ and AWD is the same, we consider the four 
linear models of variable combinations as displayed in Table 
3. The model with DWIN_R and AWD has performed best 
with the smallest CV11 (= 0.944) among linear models. The 
resultant model containing only those variables with the 
minimum PMSE3 (= 0.225) is:

API = 0.231 × ( 7.302×10 18 + 0.327 ×          

       0.249 ×            ) + 0.895. 

The negative coefficient for the z-score of AWD indicates 
that those sires that have shorter average winning distance 
produce better performed offspring.

The summary statistics of PMSEts result from tree-based 
and bagging models for sire records by eleven-fold CV are 
also presented in Table 3. The models with bagging result in 
smaller CV11 than that of CART because PMSEts of CART 
are obtained by single learners which based on trees, though 
both of them performed worse than linear models. The 
resultant model with the minimum PMSE9 (=0.974) obtained 
from CART is given in Fig. 1, for example. It can be 
interpreted that the proportion of wins to the number of 
taken races splits the inputs first, and the average winning 
distance does in consecutive order. This also indicates the 
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Table 4. Performances of proposed prediction models by nine-fold CV in dam records

Summary statistics of
PMSE1, , PMSE9 

Linear model
CART Bagging

AVG_PRZ, CI, DYIELD

Minimum 0.569 0.630 0.630

First quantile 0.642 0.681 0.656

Median 0.924 1.086 1.003

Mean (= CV9) 0.980 1.044 1.001

Third quantile 1.159 1.183 1.163

Maximum 1.918 1.978 1.922

Table 3. Performances of proposed prediction models by eleven-fold CV in sire records

Summary statistics of 
PMSE1, , PMSE11

Linear model
CART BaggingDWIN_R, AWD, 

AVG_PRZ, SEC_PRZ
DWIN_R, AVG_PRZ, 

AWD
DWIN_R, 
AVG_PRZ

DWIN_R,
AWD

Minimum 0.231 0.371 0.318 0.225 0.974 0.351

First quantile 0.546 0.549 0.625 0.054 1.242 0.486

Median 0.899 0.913 0.793 0.951 1.543 0.982

Mean (= CV11) 0.982 0.993 0.963 0.944 1.731 1.074

Third quantile 1.291 1.331 1.162 1.213 2.152 1.524

Maximum 2.140 2.349 2.389 2.394 2.947 2.108

Fig. 1. An example of tree-based prediction model for 
sire records with minimum PMSE. The split 
values correspond to z-scores of each variable. 

better accuracy of linear model in the above example, 
because both used the same explanatory variables. The 
resultant minimum PMSE model of bagging is obtained by 
ensemble trees of twenty five bootstrapped nodes, so the 
interpretation is very difficult. It can be only mentioned that 

though there are some variations, the majority of nodes in 
the best bagging model consist of CI, AVG_PRZ, AWD, 
DWIN_R, and SEC_PRZ, which are similar to those selected 
in the linear models.

2. Dam assessment model

The categorical variables with levels more than two in 
dam dataset are CLASS, SEC_PERF and BMS_CLS. We 
first conduct a single factor ANOVA on these factors and 
find that they are not significant (P > 0.1). Among the fifty 
stepwise procedures, only AVG_PRZ (100%), DYIELD (94 
%), and CI (100%) are selected as significant (P < 0.05) for 
linear model of dam records. The nine-fold CV results are 
displayed in Table 4. The resultant linear model, for 
example, with the minimum PMSE1 (=0.569) is:

API = 0.763× ( 0.515+0.057 × ln (AVG_PRZ+1) + 0.058 ×   

                      + 0.162 ×         ) + 1.002.
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Fig. 2. An example of tree-based prediction model for 
dam records with minimum PMSE. The split 
values correspond to z-scores of each variable. 

And an example of CART with the minimum PMSE is in 
Fig. 2, which is more complex than that of sires. Its 
interpretation can be done similar to the case of sires. The 
linear prediction model performed the best for dam data as 
in Table 4.

3. Implications

A stallion with a proven competition record is one 
criterion for being a suitable sire. The stallion should be 
chosen to complement the mare, with the goal of producing 
a progeny that has the best qualities of both animals, yet 
avoids having the weaker qualities of either parent. Some 
breeders consider the quality of the sire to be more 
important than the quality of the dam, and other breeders 
maintain that the mare is the most important parent. Because 
stallions can produce far more offspring than mares, a single 
stallion can have a greater overall impact on a given 
phenotype, or breed. However, the mare may have a greater 
influence on an individual progeny because its physical 
characteristics influence the developing foal in the womb and 
the foal also learns habits from its dam when young. Foals 
may also learn the language of intimidation and submission 
from their dam, and this imprinting may affect the 
offspring’s status and rank within the herd. Many times, a 
mature horse will achieve status in a herd similar to that of 
its dam; the offspring of dominant mares become dominant 

themselves. 
Here we cannot tell whether which parent (sire or dam) 

has more impact on its offspring than the other, the results 
from the proposed methods provide most important factors in 
the assessment of itself. For sire records, the individual 
excellence or aptitude in racing of each sire itself are most 
important factors in producing dominant offspring. In contrast, 
the affinity and genetic related factors influence to the 
offspring’s racing performance for dam records, indicates that 
the quality in pedigree and mating plans need to be 
considered as a prior factors in the assessment of a dam. 
Furthermore, we can explicitly predict the expected value of 
a hypothetical offspring’s racing performance index from 
contributions of only selected variables when we use linear 
models. If the proposed methods are combined with an 
analysis of breeding values, more effective models can be  
obtained because it is based on racing records that might 
complement the limitation of information that only depends 
on the RI commonly used in nicking systems to present 
horses’ racing performance. This remains as our further 
research.
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