• Title/Summary/Keyword: Pedestrian simulation

Search Result 148, Processing Time 0.027 seconds

보행자 레벨의 풍환경 예측 시 Canopy Model을 적용한 CFD 시뮬레이션 타당성 검증 (Validation of applying Canopy model to predict wind environment of pedestrian level by CFD simulation)

  • 정수현;홍인표;송두삼
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.345-353
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high-rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However the results show differences between CFD and measurement. The reason for the difference is that conventional CFD simulation couldn't consider the effect of trees, shrubs and plants which affect the wind environment. Canopy model is a solution to solve the limitation of CFD analysis. In this paper, the canopy model to predict wind environment of pedestrian level by CFD simulation will be proposed and the validity will be analyzed by comparison of measurement and CFD prediction.

  • PDF

Improved Social Force Model based on Navigation Points for Crowd Emergent Evacuation

  • Li, Jun;Zhang, Haoxiang;Ni, Zhongrui
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1309-1323
    • /
    • 2020
  • Crowd evacuation simulation is an important research issue for designing reasonable building layouts and planning more effective evacuation routes. The social force model (SFM) is an important pedestrian movement model, and is widely used in crowd evacuation simulations. The model can effectively simulate crowd evacuation behaviors in a simple scene, but for a multi-obstacle scene, the model could result in some undesirable problems, such as pedestrian evacuation trajectory oscillation, pedestrian stagnation and poor evacuation routing. This paper analyzes the causes of these problems and proposes an improved SFM for complex multi-obstacle scenes. The new model adds navigation points and walking shortest route principles to the SFM. Based on the proposed model, a crowd evacuation simulation system is developed, and the crowd evacuation simulation was carried out in various scenes, including some with simple obstacles, as well as those with multi-obstacles. Experiments show that the pedestrians in the proposed model can effectively bypass obstacles and plan reasonable evacuation routes.

보행자 법규와 자동차 후드 및 범퍼 구조물 설계방안 (Hood and Bumper Structure Design Methodology for Pedestrian Regulation)

  • 이제완;윤경한;강연수;박경택;박경진
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.162-170
    • /
    • 2005
  • Although the numbers of pedestrian fatalities and injuries are steadily declining worldwide, pedestrian protection is still an important issue. Extensive researches have been carried out in the field of pedestrian protection in order to establish pedestrian safety regulations. The automobile hoods and bumpers, which pedestrians frequently run into during accidents, should be safely designed for pedestrians. Two analysis methods are utilized to design safe structures of the hood and the bumper. They are real experiment and computer simulation. In this research, a method is developed to simultaneously utilize the results from the experiment and the simulation. For design, orthogonal arrays are employed to combine the two methods. Based on this method, a hood and a bumper are designed to protect pedestrians.

Simulating Pedestrian Evacuation Using Geographic Information Technologies

  • Jingjing, Shi;Hui, Lin
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.414-416
    • /
    • 2003
  • Pedestrian assemblage is now a normal phenomenon in modern cities. To maintain an unblocked traffic situation, protect the pedestrians' safety and make preparedness for any emergencies is an important task for police department. Modeling pedestrian dynamics and simulating evacuation process can provide useful information for make accurate decisions. In this paper, by virtue of geographic information technologies, the authors proposed a conceptual framework to simulate pedestrian dynamics and evacuation in an open urban environment.

  • PDF

Canopy Model 적용을 통한 도심지 풍환경 예측 CFD 시뮬레이션 결과의 보정 (Modification of CFD results for Wind Environment in Urban area with Tree Canopy Model)

  • 정수현;홍인표;최종규;송두삼
    • 한국태양에너지학회 논문집
    • /
    • 제32권spc3호
    • /
    • pp.185-193
    • /
    • 2012
  • Recently rapid urbanization facilitates development of high-rise building complex including apartment and office building in urban area. Many problems related with high -rise building are reported. Especially, unpleasant strong winds in pedestrian area are frequently encountered around the high-rise building. CFD simulation methods are used to analyze the wind environment of pedestrian level in high-rise building block. However, the results show differences between CFD and measurement. This difference is attributed to improper use of CFD. Conventional CFD simulation for wind environment around high-rise building does not describe the effect of trees, shrubs and plants near ground which affect the wind environment of pedestrian level. Canopy model can be used to reproduce the aerodynamic effects of trees, shrubs and plants near ground. In this paper, CFD simulation methods coupled with the tree canopy model to predict wind environment of pedestrian level in high-rise residential building block were suggested and the validity was analyzed by comparison between measurement and CFD results.

The Improved Velocity-based Models for Pedestrian Dynamics

  • Yang, Xiao;Qin, Zheng;Wan, Binhua;Zhang, Renwei;Wang, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4379-4397
    • /
    • 2017
  • Three different improvements of the Velocity-based model were proposed in a minimal velocity-based pedestrian model. The improvements of the models are based on the different agent forms. The different representations of the agent lead to different results, in this paper, we simulated the pedestrian movements in some typical scenes by using different agent forms, and the agent forms included the circles with different radiuses, the ellipse and the multi-circle stand for one pedestrian. We have proposed a novel model of pedestrian dynamics to optimize the simulation. Our model specifies the pedestrian behavior using a dynamic ellipse, which is parameterized by their velocity and can improve the simulaton accuracy. We found a representation of the pedestrian much closer to the reality. The phenomena of the self-organization can be observable in the improved models.

보행교통류를 위한 회전육각격자모형 개발 (The Rotated Hexagonal Lattice Model for Pedestrian Flow)

  • 이준;허민국;정진혁
    • 대한교통학회지
    • /
    • 제27권1호
    • /
    • pp.169-177
    • /
    • 2009
  • 본 연구에서는 SLM(Square Lattice Model)과 HLM(Hexagonal Lattice Model)을 개선하여 만든 RHLM(Rotated Hexagonal Model)을 제시하고, 이를 이용하여 양방향 보행 교통류의 시뮬레이션 모형을 개발하였다. $20{\times}20$의 400개 셀에서 진행되었으며, 시간의 변화에 따른 속도, 밀도, 교통류율로 평가하였다. 본 모형을 같은 조건에서 SLM과 비교해본 결과, 기존의 모형이 보행자의 움직임이 불필요한 동작과 비논리적 방향으로 이동하는 것을 모형에 반영하였다면, 본 모형은 보행자의 직진 움직임과 자연스러운 회피 방법을 통해 보행교통류의 최단경로 움직임을 표현할 수 있었다. 또한 보행교통류의 더 높은 곳에서 용량을 가지고 보행을 할 수 있는 현상을 반영할 수 있었고, 보행교통류의 경우 밀도가 높아지더라도 속도가 0이 되는 상황은 잘 일어나지 않는 것을 반영할 수 있음을 알 수 있었다.

보행자모델 시뮬레이션을 활용한 건강검진센터 행위자 효율성 평가에 관한 연구 (A Study on the Agent Efficiency Evaluation of Health Examination Centers Using Pedestrian Model Simulation)

  • 윤소희;권현주;김석태
    • 한국멀티미디어학회논문지
    • /
    • 제21권4호
    • /
    • pp.499-512
    • /
    • 2018
  • The application of analytical techniques for the rational determination of problems arising from management science and corporate management. In a way that is the opposite of the repair plan that can predict accurate results is increasing utilization of the complex-based analysis methodology. In this study, we examined the application of physical space and the methodological utilization of the pedestrian model analysis that applied the simulation to the Health Checkup Center. The conclusions are as follows. First, the spatial analysis and measurement for empirical research has confirmed that the efficiency assessment through the pedestrian model simulation can lead to an objective evaluation. Second, it seems to be able to reduce the queue through a change in the number of services of the low-pressure and the hearing laboratory, the recovery room with a high proportion of male disturbances and relatively long use time. The third, the spatial density analysis and the time required to reduce the density change in comparative analysis, and the spatial layout changes, the increase in the capacity of 80 people, approximately 16 minutes to shorten the process duration.

Vision-based Input-Output System identification for pedestrian suspension bridges

  • Lim, Jeonghyeok;Yoon, Hyungchul
    • Smart Structures and Systems
    • /
    • 제29권5호
    • /
    • pp.715-728
    • /
    • 2022
  • Recently, numbers of long span pedestrian suspension bridges have been constructed worldwide. While recent tragedies regarding pedestrian suspension bridges have shown how these bridges can wreak havoc on the society, there are no specific guidelines for construction standards nor safety inspections yet. Therefore, a structural health monitoring system that could help ensure the safety of pedestrian suspension bridges are needed. System identification is one of the popular applications for structural health monitoring method, which estimates the dynamic system. Most of the system identification methods for bridges are currently adapting output-only system identification method, which assumes the dynamic load to be a white noise due to the difficulty of measuring the dynamic load. In the case of pedestrian suspension bridges, the pedestrian load is within specific frequency range, resulting in large errors when using the output-only system identification method. Therefore, this study aims to develop a system identification method for pedestrian suspension bridges considering both input and output of the dynamic system. This study estimates the location and the magnitude of the pedestrian load, as well as the dynamic response of the pedestrian bridges by utilizing artificial intelligence and computer vision techniques. A simulation-based validation test was conducted to verify the performance of the proposed system. The proposed method is expected to improve the accuracy and the efficiency of the current inspection and monitoring systems for pedestrian suspension bridges.

CA기반의 다방향 보행자 시뮬레이션 모형개발 (Multi-directional Pedestrian Model Based on Cellular Automata)

  • 이준;배윤경;정진혁
    • 한국도로학회논문집
    • /
    • 제12권4호
    • /
    • pp.11-16
    • /
    • 2010
  • 보행교통류를 주제로 다양한 연구들이 진행되었지만 초기의 보행연구는 차량의 교통류이론을 그대로 적용하여 해석하기도 하였다. 최근 보행교통류에 대한 다양한 모형들이 제시되고 있으며, 특히 CA모형은 보행교통류를 위한 시뮬레이션 모형으로 빈번하게 사용되고 있다. 대표적인 CA 모형으로 가스입자의 움직임을 이용하여 양방향의 보행교통류를 설명하기도 하였는데 초기에는 정방형의 Gas-lattice 모형이 제안되었으며 이후에 정육방 Gas-lattice 모형을 이용하여 보행자의 움직임과 회피를 묘사하기도 하였다. 하지만 이러한 모형들은 보행자의 움직임을 편의임의보행으로 가정하였기 때문에 단일방향으로의 움직임만을 설명할 수 있었다. 본 연구에서 제시된 MLPM(the Multi-Layer Pedestrian Model)은 어떤 공간에서 복수개의 기종점을 가진 경우에도 현실적인 보행자의 움직임을 설명할 수 있는 모형이다.