• Title/Summary/Keyword: Pedestrian comfort

Search Result 39, Processing Time 0.024 seconds

A Study on the Temperature Reduction Effect of Street Green Area (도로변 가로녹지 유형이 기상에 미치는 영향)

  • Kim, Jeong-Ho;Choi, Won-Jun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1363-1374
    • /
    • 2017
  • Global climate change caused by industrialization has caused abnormal weather conditions such as urban temperatures and tropical nights, urban heat waves, heat waves, and heavy rains. Therefore, the study tried to analyze climate conditions and weather conditions in the streets and analyze climate factors and meteorological factors that lead to inconvenience to citizens. In the case of trees, the overall temperature, surface temperature, solar irradiance, and net radiation were measured low, and the temperature was lower in the Pedestrian road than in roads. The dry bulb temperature, the black bulb temperature, and the wet bulb temperature for the thermal evaluation showed the same tendency. In the case of thermal evaluation, there was a similar tendency to temperature in WBGT, MRT, and UTCI, and varied differences between types. Although the correlation between the meteorological environment and the thermal environment showed a statistically significant significance, the difference between the measured items was not significant. The study found that the trees were generally pleasant to weather and thermal climate in the form of trees, and the differences were mostly documented.

Change of thermal environment in buildings by wind direction (풍향에 따른 건물군에서의 열환경 변화)

  • Kim, Sang-Jin
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.27-32
    • /
    • 2012
  • In recent years, the quality of the outdoor thermal environment has come to be regarded as important as that of the indoor thermal environment. Since the outdoor thermal environment is composed of many elements and is affected by many factors, it is not easy to evaluate the impact of each factor separately. Hence, a comprehensive assessment method is required. In order to evaluate the pedestrian level comfort of an outdoor climate, it is necessary to investigate not only wind velocity but also various physical elements, such as temperature, moisture, radiation, etc. Prediction of wind and thermal environment for a large scale buildings is one of the most important targets for research. Wind and thermal change in a city area is a very complicated phenomenon affected by many physical processes. The purpose of this study is to develop a design plan for wind environment at a large Buildings. In this study, we analyze outdoor wind environment and thermal environment on buildings using the CFD (Computational Fluid Dynamics) method. The arrangement of building models is an apartment in Jeonju. These prediction of wind and thermal environment for a large scale buildings is necessary in a plan before a building is built.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

An Analysis of Thermal Comforts for Pedestrians by WBGT Measurement on the Urban Street Greens (도심 가로 녹음의 습구흑구온도(WBGT) 측정을 통한 보행자 열쾌적성 효과 분석)

  • Ahn, Tong-Mahn;Lee, Jae-Won;Kim, Bo-Ram;Yoon, Ho-Seon;Son, Seung-Woo;Choi, Yoo;Lee, Na-Rae;Lee, Ji-Young;Kim, Hae-Ryung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.3
    • /
    • pp.22-30
    • /
    • 2013
  • This study aims to measure the thermal comfort effects of urban street trees. As the usual dry bulb air temperature does not indicate properly how the average pedestrian feels the heat of a typical summer day under the strong sunshine, we adopted the Wet Bulb Globe Temperature(WBGT). WBGT involves black globe temperature to measure the direct radiation of sun beams on our bodies, for example our heads. We measured temperatures on very sunny and hot summer days, August 3, 4, and 7, 2012, on the urban streets of Seoul, Korea. Wet bulb, globe, and dry bulb temperatures were measured under direct sunlight from 1 O'clock to 5 O'clock pm. Globe and dry bulb temperatures were measured under street tree shades nearby during the same hours. Then the WBGTs were calculated with the formulae, one for sunny outdoor spaces, and the other for shaded outdoor spaces or indoor. The results are compared with the Korean Standards Association(KS A ISO 7243). The major findings were: 1) On very sunny and hot summer days in Seoul, street tree shades lower the WBGT about 1 to 4 degrees, 2) during the hours of 3 and 4 O'clock in the afternoon, the WBGT under the tree shades are about 3 to 4 degrees lower compared to those under sunshines(approx. 29 to 32 degrees respectively), 3) This difference makes a major thermal comfort for urban pedestrians because senior citizens or weak persons are recommended to move indoor, and even healthy people are recommended stop outdoor sports and take rests in the shades when WBGT is about 32. On the other hand, if the WBGT is around 29, or 3 degrees lower, slower walking, light works or sports are allowable, 4) On site questionnaire survey confirms the thermal comforts under the tree shades, and we even could not get survey subjects on the sunny parts of the sidewalks, 5) We strongly recommend change of guidelines for urban street trees from "one row of street trees on 6m~8m intervals" to "street trees to make continuous shades".

Influence of Physical Environment Perception on Park Use for Health Improvement - Focused on Neighborhood Parks in Suseong-gu, Daegu City - (공원 내 물리적 환경인식이 건강증진 목적의 공원이용에 미치는 영향 - 대구광역시 수성구 근린공원을 대상으로 -)

  • Jang, Cheol-Kyu;Jung, Sung-Gwan;Lee, Woo-Sung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.5
    • /
    • pp.68-80
    • /
    • 2016
  • This study analyzed the influence of the perception of physical environment on user satisfaction and park use when people use the park to improve their health. The study is focused on neighborhood parks in Suseong-gu, Daegu city. Statistical analyses were employed to data collected from 143 visitors on site. First of all, in the perception evaluation of the physical environment of the park, accessibility and pedestrian environment are the highest at 4.04, while water space and attractions in the park as the lowest parts are at 2.32 and 2.66. After conduct factor analysis to type 22 physical environmental awareness components, five main factors--Comfort, Availability, Amenity, Facilities convenience and Visuality--were classified. Then, satisfaction and influence on park use were analyzed. As a result, the factors affecting user satisfaction were comfort, availability, amenity and facility convenience. Among them, the category of amenity was the most influential factor at 0.315. The factors affecting the park use were availability and amenity. Availability factor had a higher influence at 0.396 than amenity at 0.293. Therefore, in order to improve satisfaction and park use for health improvement, it is necessary to secure sufficient green areas and create a pleasant environment. Also, it is necessary to improve the quality of walkability from homes to parks, trail improvement and other improvements.

A Study on Assessment Indicator of Walking Environment Considering Land Use Characteristics (토지이용을 고려한 보행환경 평가지표 개발 및 적용에 관한 연구)

  • Kim, Suk Hee;Lee, Kyu Jin;Choi, Keechoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.931-938
    • /
    • 2014
  • This study presents a systematic method of evaluation with the premise that satisfaction rating scale of the walking environment will vary according to the characteristics of land use by footpath types. Ultimately, it aims to contribute to the effective management and improvement of footpaths. The result of the study shows a statistically significant difference in the indicators and it's weights for walking environment on new town, old town, commercial areas, subway station, river and park by footpath types. After applying the walking environment assessment model to some of the footpaths in Suwon, it was found that actual level can be simulated successfully in reality. Therefore, the result of the study is expected to help determining the priorities for the walking environment improvement for the local government.

A Study on Improvement of Site Selecting Indicators for Safe Pedestrian Environment (안전한 보행환경 사업 대상지 선정지표 개선방안 연구)

  • Lee, Jong Nam;Heo, Joon;Cho, Won Cheol;Lee, Tae Shik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.79-86
    • /
    • 2013
  • As car-oriented road policies have been made forward so far, relatively pedestrians' walking conditions are so in poor environments that more than two thousand pedestrians die from car accidents every year. Pedestrians' walking right has been severely invaded like that. Pedestrians' walking right is a right that people are able to walk safely and comfortably in pleasant surroundings as long as they don't threaten the public safety, order maintenance, and welfare. The government has an obligation to provide safe, comfortable, and pleasant environments to pedestrians. Recently interests in pedestrians' safety are increasing, government-driven supports have been made to make safe, pleasant, and healthy walking surroundings. As poor walking condition improvement projects cost high, they should be progressed to accomplish maximal effects using finite finances efficiently, and post feasibility evaluations of the projects should be severely estimated. However site selecting indicators which satisfy with the goal for composing safe working surroundings have not been decided yet, though currently it has a legal basis to specify walking condition improvement sites by the Law for Pedestrians' safety and Comfort Increasement. Therefore this study focuses on suggesting improved ways for selecting sites where pedestrians' safe environment project by reviewing previous research. When project sites are selected, evaluation indicators related to awareness survey of residents and history should be excluded, and disaster safety assessments for walking safety facilities, latent human hazards and natural disasters like a strong wind are proposed besides evaluations on pedestrians' safety and walking environment for matching with the purpose of the project to make safe working surroundings.

Inferring Pedestrians' Emotional States through Physiological Responses to Measure Subjective Walkability Indices

  • Kim, Taeeun;Lee, Meesung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1245-1246
    • /
    • 2022
  • Walkability is an indicator of how much pedestrians are willing to walk and how well a walking environment is created. As walking can promote pedestrians' mental and physical health, there has been increasing focus on improving walkability in different ways. Thus, plenty of research has been undertaken to measure walkability. When measuring walkability, there are many objective and subjective variables. Subjective variables include a feeling of safety, pleasure, or comfort, which can significantly affect perceived walkability. However, these subjective factors are difficult to measure by making the walkability index more reliant on objective and physical factors. Because many subjective variables are associated with human emotional states, understanding pedestrians' emotional states provides an opportunity to measure the subjective walkability variables more quantitatively. Pedestrians' emotions can be examined through surveys, but there are social and economic difficulties involved when conducting surveys. Recently, an increasing number of studies have employed physiological data to measure pedestrians' stress responses when navigating unpleasant environmental barriers on their walking paths. However, studies investigating the emotional states of pedestrians in the walking environment, including assessing their positive emotions felt, such as pleasure, have rarely been conducted. Using wearable devices, this study examined the various emotional states of pedestrians affected by the walking environment. Specifically, this study aimed to demonstrate the feasibility of monitoring biometric data, such as electrodermal activity (EDA) and heart rate variability (HRV), using wearable devices as an indicator of pedestrians' emotional states-both pleasant-unpleasant and aroused-relaxed states. To this end, various walking environments with different characteristics were set up to collect and analyze the pedestrians' biometric data. Subsequently, the subjects wearing the wearable devices were allowed to walk on the experimental paths as usual. After the experiment, the valence (i.e., pleasant or unpleasant) and arousal (i.e., activated or relaxed) scale of the pedestrians was identified through a bipolar dimension survey. The survey results were compared with many potentially relevant EDA and HRV signal features. The research results revealed the potential for physiological responses to indicate the pedestrians' emotional states, but further investigation is warranted. The research results were expected to provide a method to measure the subjective factors of walkability by measuring emotions and monitoring pedestrians' positive or negative feelings when walking to improve the walking environment. However, due to the lack of samples and other internal and external factors influencing emotions (which need to be studied further), it cannot be comprehensively concluded that the pedestrians' emotional states were affected by the walking environment.

  • PDF

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.