• Title/Summary/Keyword: Pedestrian Classification

Search Result 60, Processing Time 0.024 seconds

Social Pedestrian Group Detection Based on Spatiotemporal-oriented Energy for Crowd Video Understanding

  • Huang, Shaonian;Huang, Dongjun;Khuhroa, Mansoor Ahmed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3769-3789
    • /
    • 2018
  • Social pedestrian groups are the basic elements that constitute a crowd; therefore, detection of such groups is scientifically important for modeling social behavior, as well as practically useful for crowd video understanding. A social group refers to a cluster of members who tend to keep similar motion state for a sustained period of time. One of the main challenges of social group detection arises from the complex dynamic variations of crowd patterns. Therefore, most works model dynamic groups to analysis the crowd behavior, ignoring the existence of stationary groups in crowd scene. However, in this paper, we propose a novel unified framework for detecting social pedestrian groups in crowd videos, including dynamic and stationary pedestrian groups, based on spatiotemporal-oriented energy measurements. Dynamic pedestrian groups are hierarchically clustered based on energy flow similarities and trajectory motion correlations between the atomic groups extracted from principal spatiotemporal-oriented energies. Furthermore, the probability distribution of static spatiotemporal-oriented energies is modeled to detect stationary pedestrian groups. Extensive experiments on challenging datasets demonstrate that our method can achieve superior results for social pedestrian group detection and crowd video classification.

Pedestrian recognition using differential Haar-like feature based on Adaboost algorithm to apply intelligence wheelchair (지능형 휠체어 적용을 위해 Haar-like의 기울기 특징을 이용한 아다부스트 알고리즘 기반의 보행자 인식)

  • Lee, Sang-Hun;Park, Sang-Hee;Lee, Yeung-Hak;Seo, Hee-Don
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.481-486
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using differential haar-like feature, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: horizontal haar-like feature and vertical haar-like feature. For the next, we calculate the proposed feature vector using differential haar-like method. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using the differential area of horizontal and vertical haar-like. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method for the pedestrian and non-pedestrian.

Contributory Negligence Study on Traffic Accident in Area Between Crosswalk and Stop Line at Intersections (횡단보도와 횡단보도 정지선간 이격공간에서의 과실상계 연구)

  • 신성훈;장명순;김남현
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.5
    • /
    • pp.41-48
    • /
    • 2003
  • Korea Claim Adjustor Association(KCAA) defines the near pedestrian crossing accidents as those accidents that occurred in the area within 25m from pedestrian crossing on the arterial road and within 15m from pedestrian crossing on other classes of road. Accidents between pedestrian crossing and stop line are classified as the accident near pedestrian crossing. Reviewing of current statute and court precedent, three kinds of traffic accidents which are accidents occurred in the pedestrian crossing. near pedestrian crossing and the area between pedestrian crossing and stop line. should be distinguished by different pedestrian contributory negligence. To find out how different they are. we surveyed transportation society members about the contributory negligence of traffic accidents between pedestrian crossing and stop line and the results are as follows : (1) The current two classification of pedestrian crossing accidents and near pedestrian crossing accidents should be changed to three classification of pedestrian crossing accidents that includes accidents on pedestrian crossing, near pedestrian crossing and between pedestrian crossing and the stop line. (2) For the pedestrian's contributory negligence, the least reasonability to pedestrian is accident on the pedestrian crossing. The next one is the accident between pedestrian crossing and stop line and the last is the accident near pedestrian crossing. (3) Pedestrian contributory negligence for accident by space is recommended as 〈table 8〉, 〈table 9〉, 〈table 10〉. (4) Contributory negligence rate of the accident on the pedestrian crossing during red light should be modified to be less than that of near pedestrian crossing.

Analyzing DNN Model Performance Depending on Backbone Network (백본 네트워크에 따른 사람 속성 검출 모델의 성능 변화 분석)

  • Chun-Su Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.128-132
    • /
    • 2023
  • Recently, with the development of deep learning technology, research on pedestrian attribute recognition technology using deep neural networks has been actively conducted. Existing pedestrian attribute recognition techniques can be obtained in such a way as global-based, regional-area-based, visual attention-based, sequential prediction-based, and newly designed loss function-based, depending on how pedestrian attributes are detected. It is known that the performance of these pedestrian attribute recognition technologies varies greatly depending on the type of backbone network that constitutes the deep neural networks model. Therefore, in this paper, several backbone networks are applied to the baseline pedestrian attribute recognition model and the performance changes of the model are analyzed. In this paper, the analysis is conducted using Resnet34, Resnet50, Resnet101, Swin-tiny, and Swinv2-tiny, which are representative backbone networks used in the fields of image classification, object detection, etc. Furthermore, this paper analyzes the change in time complexity when inferencing each backbone network using a CPU and a GPU.

  • PDF

Pedestrian Recognition using Adaboost Algorithm based on Cascade Method by Curvature and HOG (곡률과 HOG에 의한 연속 방법에 기반한 아다부스트 알고리즘을 이용한 보행자 인식)

  • Lee, Yeung-Hak;Ko, Joo-Young;Suk, Jung-Hee;Roh, Tae-Moon;Shim, Jae-Chang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.654-662
    • /
    • 2010
  • In this paper, we suggest an advanced algorithm, to recognize pedestrian/non-pedestrian using second-stage cascade method, which applies Adaboost algorithm to make a strong classification from weak classifications. First, we extract two feature vectors: (i) Histogram of Oriented Gradient (HOG) which includes gradient information and differential magnitude; (ii) Curvature-HOG which is based on four different curvature features per pixel. And then, a strong classification needs to be obtained from weak classifications for composite recognition method using both HOG and curvature-HOG. In the proposed method, we use one feature vector and one strong classification for the first stage of recognition. For the recognition-failed image, the other feature and strong classification will be used for the second stage of recognition. Based on our experiment, the proposed algorithm shows higher recognition rate compared to the traditional method.

A Study on the Pedestrian Detection on the Road Using Machine Vision (머신비전을 이용한 도로상의 보행자 검출에 관한 연구)

  • Lee, Byung-Ryong;Truong, Quoc Bao;Kim, Hyoung-Seok;Bae, Yong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.490-498
    • /
    • 2011
  • In this paper, we present a two-stage vision-based approach to detect multi views of pedestrian in road scene images. The first stage is HG (Hypothesis Generation), in which potential pedestrian are hypothesized. During the hypothesis generation step, we use a vertical, horizontal edge map, and different colors between road background and pedestrian's clothes to determine the leg position of pedestrian, then a novel symmetry peaks processing is performed to define how many pedestrians is covered in one potential candidate region. Finally, the real candidate region where pedestrian exists will be constructed. The second stage is HV (Hypothesis Verification). In this stage, all hypotheses are verified by Support Vector Machine for classification, which is robust for multi views of pedestrian detection and recognition problems.

DeepPTP: A Deep Pedestrian Trajectory Prediction Model for Traffic Intersection

  • Lv, Zhiqiang;Li, Jianbo;Dong, Chuanhao;Wang, Yue;Li, Haoran;Xu, Zhihao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2321-2338
    • /
    • 2021
  • Compared with vehicle trajectories, pedestrian trajectories have stronger degrees of freedom and complexity, which poses a higher challenge to trajectory prediction tasks. This paper designs a mode to divide the trajectory of pedestrians at a traffic intersection, which converts the trajectory regression problem into a trajectory classification problem. This paper builds a deep model for pedestrian trajectory prediction at intersections for the task of pedestrian short-term trajectory prediction. The model calculates the spatial correlation and temporal dependence of the trajectory. More importantly, it captures the interactive features among pedestrians through the Attention mechanism. In order to improve the training speed, the model is composed of pure convolutional networks. This design overcomes the single-step calculation mode of the traditional recurrent neural network. The experiment uses Vulnerable Road Users trajectory dataset for related modeling and evaluation work. Compared with the existing models of pedestrian trajectory prediction, the model proposed in this paper has advantages in terms of evaluation indicators, training speed and the number of model parameters.

Efficient Implementation of Candidate Region Extractor for Pedestrian Detection System with Stereo Camera based on GP-GPU (스테레오 영상 보행자 인식 시스템의 후보 영역 검출을 위한 GP-GPU 기반의 효율적 구현)

  • Jeong, Geun-Yong;Jeong, Jun-Hee;Lee, Hee-Chul;Jeon, Gwang-Gil;Cho, Joong-Hwee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.2
    • /
    • pp.121-128
    • /
    • 2013
  • There have been various research efforts for pedestrian recognition in embedded imaging systems. However, many suffer from their heavy computational complexities. SVM classification method has been widely used for pedestrian recognition. The reduction of candidate region is crucial for low-complexity scheme. In this paper, We propose a real time HOG based pedestrian detection system on GPU which images are captured by a pair of cameras. To speed up humans on road detection, the proposed method reduces a number of detection windows with disparity-search and near-search algorithm and uses the GPU and the NVIDIA CUDA framework. This method can be achieved speedups of 20% or more compared to the recent GPU implementations. The effectiveness of our algorithm is demonstrated in terms of the processing time and the detection performance.

Implementation of Smart Video Surveillance System Based on Safety Map (안전지도와 연계한 지능형 영상보안 시스템 구현)

  • Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.169-174
    • /
    • 2018
  • There are many CCTV cameras connected to the video surveillance and monitoring center for the safety of citizens, and it is difficult for a few monitoring agents to monitor many channels of videos. In this paper, we propose an intelligent video surveillance system utilizing a safety map to efficiently monitor many channels of CCTV camera videos. The safety map establishes the frequency of crime occurrence as a database, expresses the degree of crime risk and makes it possible for agents of the video surveillance center to pay attention when a woman enters the crime risk area. The proposed gender classification method is processed in the order of pedestrian detection, tracking and classification with deep training. The pedestrian detection and tracking uses Adaboost algorithm and probabilistic data association filter, respectively. In order to classify the gender of the pedestrian, relatively simple AlexNet is applied to determine gender. Experimental results show that the proposed gender classification method is more effective than the conventional algorithm. In addition, the results of implementation of intelligent video security system combined with safety map are introduced.

The Effective Third Circulation Plan Based on Elevator and Escalator Users Surveys in Mixed-Use Buildings (복합건축의 수직동선 이용자별 효율적인 제3동선의 설정)

  • Lee, Jin-Kyoung;Kim, Chan-Ju
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.2
    • /
    • pp.3-10
    • /
    • 2019
  • The purpose of the study is to survey the effective methodology of composition and connection for the third pedestrian routes in mixed-use building by case studies. The study is performed as follows: First of all, pedestrian routes are classified into malling route, evacuation route, and the Third route. Secondly, case studies are conducted based on the classification. Thirdly, it is investigated about the composition and connection of the malling and the Third pedestrian route. The investigation is focused on gate, path, central area, vertical circulation(EV and escalator) and the four circulation elements. Finally, the effective methodology is extracted for setting the Third route in mixed-use buildings. The conclusion of the study is as follows: The enhancement of consistency and connection between the main route and the Third route is important for providing convenient paths especially to users who needs shortcut, EV/ES users. Additionally, the connections between EV and gate, between shortcut and EV/ES should be increased to enable users choosing their path as needed.