Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
IEIE Transactions on Smart Processing and Computing
/
v.5
no.4
/
pp.256-266
/
2016
Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.
Journal of Korean Society for Geospatial Information Science
/
v.24
no.1
/
pp.69-80
/
2016
Some studies were conducted for the purpose of minimizing total clearance time for rapid evacuation from the indoor spaces when disaster occurs. Most studies took a long time to calculate the optimal evacuation route that derived minimum evacuation time. For this reason, this study proposes an evacuation route assignment algorithm that can shorten the total clearance time in a short operational time. When lots of exits are in the building, this algorithm can shorten the total clearance time by assigning the appropriate pedestrian traffic volume to each exit and balances each exit-load. The graph theory and greedy algorithm were utilized to assign pedestrian traffic volume to each exit in this study. To verify this algorithm, study used a cellular automata-based evacuation simulator and experimented various occupants distribution in a building structure. As a result, the total clearance time is reduced by using this algorithm, compared to the case of evacuating occupants to the exit within shortest distance. And it was confirmed that the operation takes a short time In a large building structure.
For an emotion retrieval system implementation to support pedestrian navigation, coordinating the pedestrian emotion model with the system user's emotion is considered a key component. This study proposes a new method for capturing the user's model that corresponds to the pedestrian emotion model and examines the validity of the method. In the first phase, a database comprising a set of interior images that represent hypothetical destinations was developed. In the second phase, 10 subjects were recruited and asked to evaluate on navigation and satisfaction toward each interior image in five rounds of navigation experiments. In the last phase, the subjects' feedback data was used for of the pedestrian emotion model, which is called ‘learning' in this study. After evaluations by the subjects, the learning effect was analyzed by the following aspects: recall ratio, precision ratio, retrieval ranking, and satisfaction. Findings of the analysis verify that all four aspects significantly were improved after the learning. This study demonstrates the effectiveness of the learning algorithm for the proposed pedestrian emotion model. Furthermore, this study demonstrates the potential of such pedestrian emotion model to be well applicable in the development of various mobile contents service systems dealing with visual images such as commercial interiors in the future.
In this study, a smart assistive device is designed to recognize pedestrian signal and to provide audio instructions for visually impaired people in crossing streets safely. Walking alone is one of the biggest challenges to the visually impaired and it deteriorates their life quality. The proposed device has a camera attached on a pair of glasses which can detect traffic lights, recognize pedestrian signals in real-time using a machine learning algorithm on GPU board and provide audio instructions to the user. For the portability, the dimension of the device is designed to be compact and light but with sufficient battery life. The embedded processor of device is wired to the small camera which is attached on a pair of glasses. Also, on inner part of the leg of the glasses, a bone-conduction speaker is installed which can give audio instructions without blocking external sounds for safety reason. The performance of the proposed device was validated with experiments and it showed 87.0% recall and 100% precision for detecting pedestrian green light, and 94.4% recall and 97.1% precision for detecting pedestrian red light.
Do, Trung Dung;Vu, Thi Ly;Nguyen, Van Huan;Kim, Hakil;Lee, Chongho
Journal of Computing Science and Engineering
/
v.8
no.4
/
pp.207-214
/
2014
In pedestrian detection applications, one of the most popular frameworks that has received extensive attention in recent years is widely known as a 'Hough forest' (HF). To improve the accuracy of detection, this paper proposes a novel split function to exploit the statistical information of the training set stored in each node during the construction of the forest. The proposed split function makes the trees in the forest more robust to noise and illumination changes. Moreover, the errors of each stage in the training forest are minimized using a global loss function to support trees to track harder training samples. After having the forest trained, the standard HF detector follows up to search for and localize instances in the image. Experimental results showed that the detection performance of the proposed framework was improved significantly with respect to the standard HF and alternating decision forest (ADF) in some public datasets.
Journal of the Korea Academia-Industrial cooperation Society
/
v.8
no.5
/
pp.968-972
/
2007
The importance of bumper system lies not only in the styling of vehicles, but also in the protection of vehicles and pedestrians from reasonable impact. In this study, we proceed to search a method for efficient bumper system without using the impact test and the computer simulation to analyze the bumper system. In the process of the research, we proposed the each method that is used to search the shape that satisfy each regulations in first, because bumper's dimensions to satisfy 'vehicle protection' regulations and form's dimensions to satisfy ‘pedestrian protection' regulations are difficult to exist together. After that we proposed the calculate method and design algorithm that is used to search a reasonable point satisfying the two regulations together.
Qiang Gao;Zhicheng He;Xu Jia;Yinghong Xie;Xiaowei Han
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.3
/
pp.840-860
/
2023
Aiming at the serious occlusion and slow tracking speed in pedestrian target tracking and recognition in complex scenes, a target tracking method based on improved YOLO v5 combined with Deep SORT is proposed. By merging the attention mechanism ECA-Net with the Neck part of the YOLO v5 network, using the CIoU loss function and the method of CIoU non-maximum value suppression, connecting the Deep SORT model using Shuffle Net V2 as the appearance feature extraction network to achieve lightweight and fast speed tracking and the purpose of improving tracking under occlusion. A large number of experiments show that the improved YOLO v5 increases the average precision by 1.3% compared with other algorithms. The improved tracking model, MOTA reaches 54.3% on the MOT17 pedestrian tracking data, and the tracking accuracy is 3.7% higher than the related algorithms and The model presented in this paper improves the FPS by nearly 5 on the fps indicator.
In this paper, GPS(Global Positioning System) that can be used outdoors and GPS(Global Positioning System) is not available for indoor Wi-Fi(Wireless Fidelity) using the Android-based location information system has been designed and implemented. Pedestrians in a room in order to estimate the location of the pedestrian's position, regardless of need to obtain the absolute position and relative position, depending on the movement of pedestrians in a row it is necessary to estimate. In order to estimate the initial position of the pedestrian Wi-Fi Fingerprinting was used. Most existing Wi-Fi Fingerprinting position error small WKNN(Weighted K Nearest Neighbor) algorithm shortcoming EWKNN (Enhanced Weighted K Nearest Neighbor) using the algorithm raised the accuracy of the position. And in order to estimate the relative position of the pedestrian, the smart phone is mounted on the IMUInertial Measurement Unit) because the use did not require additional equipment.
The purpose of this paper is to improve the existing phase split algorithm considering the minimum green time in COSMOS. In the case of a signalized intersection where two wide and narrow streets intersect each other, the time required for the pedestrian crossing is frequently longer than the time alloted to the through traffic on a minor street. In order to meet the minimum green time requirement for the pedestrian less time in alloted automatically to the left-turn traffic, creating heavy congestion on the left-turn approach. To solve this problem, this study suggests a new algorithm which shares the barrier using minimum green time and shares the burden with signal phases alloted to the crossing street traffic on the basis of the equal ratio of the degree of saturation, while maintaining the minimum green time requirement. The new algorithm was compared with the existing algorithm by using a microscopic simulation model for COSMOS evaluation developed at Ajou University. The simulation results show that the new algorithm produces better performance than the existing one.
Lee, Min Su;Ju, Ho Jin;Park, Chan Gook;Heo, Moonbeom
Journal of Institute of Control, Robotics and Systems
/
v.19
no.7
/
pp.640-645
/
2013
This paper presents a step length estimation algorithm for Pedestrian Dead Reckoning using linear calibrated ZUPT (zero velocity update) with a foot mounted IMU. The IMU consists of 3 axis accelerometer, gyro and magnetometer. Attitude of IMU is estimated using an inertial navigation algorithm. To increase accuracy of step length estimation algorithm, we propose a stance detection algorithm and an enhanced ZUPT. The enhanced ZUPT calculates firefighter's step length considering velocity error caused by sensor bias during one step. This algorithm also works efficiently at various motions, such as crawling, sideways and stair stepping. Through experiments, the step length estimation performance of the proposed algorithm is verified.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.