• Title/Summary/Keyword: Peak to Average Power Ratio, PAPR

Search Result 243, Processing Time 0.024 seconds

Compensation for Nonlinear Distortion in OFDM Systems Using a Digital Predistorter Based on the Canonical PWL Model (Canonical PWL 모델 기반의 디지털 사전왜곡기를 이용한 OFDM 시스템의 비선형 왜곡 보상)

  • Seo, Man-Jung;Shim, Hee-Sung;Im, Sung-Bin;Jung, Jae-Ho;Lee, Kwang-Chun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Orthogonal frequency division multiplexing (OFDM) is an attractive technique for achieving high-bit-rate wireless data transmission. However, multicarrier systems such as OFDM show great sensitivity to nonlinear distortion. The OFDM structure requires a summation of a large number of subcarriers for multicarrier modulation, and as a result of this summation large signal envelope fluctuations occur. These fluctuations make OFDM systems to be very sensitive to nonlinear distortion introduced by the high power amplifier (HPA) at the transmitter. In this paper, we propose a canonical piecewise-linear (CPWL) model based digital predistorter to compensate for nonlinear distortion introduced by the high peak-to-average power ratio (PAPR) and the HPA in OFDM systems. The performance of the new predistortion scheme for OFDM systems is evaluated in terms of total degradation (TD) and bit error rate (BER). The simulation results demonstrated that the proposed predistorter achieves significant performance improvement by effectively compensating for the nonlinear distortion introduced by the HPA.

A Coherent Phase Sequence Detection Scheme for SLM-based OFDM Systems without Side Information (위상 신호에 대한 부가 정보가 없는 SLM 기반 OFDM 시스템을 위한 동기식 위상 신호 검출 방식)

  • Ryu, Chang Su;Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.15-20
    • /
    • 2016
  • In this paper, we consider selective mapping (SLM) based OFDM systems without side information, where SLM is one of the promising peak-to-average power ratio (PAPR) reduction techniques due to its simplicity and no distortion in the transmitted signal. First, we construct a new phase sequence where a part of phase sequence is replaced by an orthogonal sequence. Based on the proposed phase sequence, we propose a new scheme for detecting coherently the index of the phase sequence used in transmitter without side information. Computer simulation shows that the proposed detection scheme performs well in SLM-based OFDM systems, and specifically outperforms the existing ones when channel variation is relatively small between sub-carriers used in phase sequence detection.

Performance Analysis of SLM Method for PAR Reduction Based on OFDM System (OFDM 시스템에서 PAR 감소를 위한 SLM 기법의 성능 분석)

  • Lee, Sang-Geun;Lee, Yoon-Hyun;Jin, Seong-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 2006
  • In these days, OFDM(Orthogonal Frequency Division Multiplexing) is adopted to support high-speed data communication based on multi-path RF channel, but it has some weak point. One of those is that it has a higher PAR(peak-to-average power ratio) compared with single-carrier method. If some PAR of the transmitted signal is high, nonlinear amplitude distortion has occurred when it pass through the HPA(high power amplifier). There is a solution to prevent nonlinear distortion using higher peak power HPA, but it makes inefficiency and a cost problem. In this paper, we choose the SLM(Selected Mapping) scheme, which transmit the lowest PAR signal after OFDM symbol mapping, in various schemes reducing PAR for OFDM system. And we derived the performances of SLM method in fading channel through computer simulations.

  • PDF

PAPR Improvement of OFDM-CQAM System Through Optimum Position Impulse Insertion Scheme in Frequency Domain (주파수영역 최적 위치 임펄스 삽입기법에 의한 OFDM-CQAM 시스템의 PAPR 개선)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.258-263
    • /
    • 2019
  • OFDM is popular digital communication method due to its immunity to multipath fading and capability of high speed data transmission, but it has disadvantage of high PAPR in transmission signal when many subcarrier modulated signal are added to the same phase. When frequency domain high amplitude impulse is inserted before IFFT in OFDM transmitter, the PAPR of OFDM signal in tme domain can be effectively reduced. In this paper, the degree of PAPR improvement of OFDM communication system with CQAM subcarrier modulation is analysed by adopting impulse insertion technique before IFFT of transmitter. Furthermore, it is verified that additional PAPR performance improvement can be obtained by finding optimum position of impulse insertion for maximizing PAPR reduction. Through computer simulation, the degree of PAPR improvement according to amplitude and position of inserted impulse is superior to conventional technique in OFDM-CQAM system.

Complexity reduced partial transmit sequence for PAPR reduction and performance analysis with nonlinear high power amplifier in MC-CDMA (MC-CDMA에서 PAPR 감소를 위한 복잡도가 감소된 부분전송열 기법과 비선형 고출력 증폭기에 의한 성능 분석)

  • 강군석;김수영;오덕길;김재명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5A
    • /
    • pp.305-315
    • /
    • 2003
  • MC-CDMA(Multicarrier code division multiple access), which is based on a combination of OFDM(orthogonal frequency division multiplexing) and CDMA(code division multiple access), has gained a lot of interests in wireless multimedia communications, as high speed data transmission is required for mobile services. MC-CDMA has many advantages for broadband high speed data transmission in multipath environment because it can offer both advantages of the CDMA and the OFDM. However, A high PAPR(peak to average power ratio) problem, which is a major drawback of OFDM, is also shown in the MC-CDMA. In this paper, we propose a new phase factor optimization scheme to reduce complexity in PTS(partial transmit sequence) to reduce PAPR. We also analyze the performance of the MC-CDMA with various PTS schemes to investigate the relations between PAPR characteristics and effect of nonlinear distortion of a high power amplifier. Our simulation results reveal that the proposed PTS scheme reduces PAPR about 0.2∼0.5 dB even with 25% reduced- complexity compared to the conventional scheme.

Evaluation on PAPR Performance of Eureka 147 DAB System with Companding Technique (Companding 기법을 적용한 Eureka 147 DAB 시스템의 PAPR성능평가)

  • 정영호;박소라;이수인;김환우
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.229-234
    • /
    • 2002
  • OFDM(Orthogonal Frequency Division Multiplexing) 전송방식은 SCM(Single Carrier Modulation)에 비해 우수한 여러 가지 장점들을 가지며, 방송시스템들 중 Eureka 147 DAB(Digital Audio Broadcasting) 시스템에 가장 먼저 채택되었다. 그러나 OFDM 신호의 높은 PAPR(Peak-to-Average Power Ratio) 특성은 D/A, A/D 변환기의 복잡도를 높이고, 고출력 증폭기의 효율성을 감소시키는 원인이 된다. 이를 개선하기 위한 방법 중에, SDT(Signal Distortion Technique)는 전송시스템의 규격 및 수신기의 변경 없이도 적용 가능하다는 장점을 갖는다. 본 논문에서는 SDT에 속하는 companding 기법을 Eureka 147 DAB 시스템에 적용하여 PAPR 개선정도에 따른 시스템의 요구 $E_2/N_0$ 및 out-of-band의 PSD 열화 정도를 분석하였으며, 이를 clipping 기법의 성능과 비교하였다. 모의실험 결과, $\mu$값이 2인 경우, companding 기법이 PAPR, $E_2/N_0$, out-of-band의 PSD 특성 모두에서 clipping 기법에 비해 우수한 성능을 나타냈다. 또한 $\mu$ 값을 고정시킨 경우, 정규화 값이 증가할수록 신호왜곡 정도가 줄어들어 $E_2/N_0$, out-of-band의 PSD 성능개선 정도는 증가하지만, 이와는 반대로 PAPR 값은 개선 정도가 줄어들었다.

  • PDF

Improving the PTS Method for the PAPR Reduction in the OFDM System (OFDM 시스템에서 PAPR 감소를 위한 PTS 기법의 성능개선)

  • Kim, Dong-Seek;Kwak, Min-Gil;Cho, Hyung-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1165-1171
    • /
    • 2010
  • The OFDM system has better characteristics in transmission rate, power efficiency, bandwidth efficiency, impulse-noise immunity, and narrow band interference immunity etc. in comparison with other conventional systems. However, high PAPR of an OFDM signals causes some serious non-linear processing of RF amplifier. And performance of the communication system gets worse. Therefore, various methods reducing PAPR of an OFDM skills such as the clipping method, block coding method, and phase rotation method etc. have been researched. In this paper, we propose a high-speed adaptive PTS method which eliminates high PAPR. And we compare the proposed method with other conventional methods. The proposed method has decreased quantity of calculation compare with an adaptive PTS method. Of course, The more its calculation amount is decreased, the more its BER characteristic is not better than an adaptive PTS method. However, keeping up satisfactory BER performance, we highly improved calculation amount of a PTS method.

OFDM Communication System Based on the IMD Reduction Method (IMD 저감 방식을 기반으로 하는 OFDM 통신 시스템)

  • Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1172-1180
    • /
    • 2007
  • OFDM system has very good high spectral efficiency and the robustness to the frequency-selective fading. Because of the high PAPR, OFDM signals can be distorted in nonlinear HPA(High Power Amplifier). So, to overcome the nonlinear distortion, it is very important to reduce the IMD value. With respect to the BER performance, IMD reduction method is better than the PAPR reduction method. However, IMD reduction method has much more system complexity because of the additional FFT processor in transmitter. In this paper, we study the OFDM communication system based on the IMD reduction method using SPW method. A new IMD reduction method is proposed to reduce the computational complexity. SPW method is to divide the input OFDM data into several sub-blocks and to multiply phase weighting values with each sub-blocks for the reduction of PAPR or IMD. Unlike the conventional method, the system size and computational complexity can be reduced.

PAPR Reduction Using Hybrid Schemes for Satellite Communication System

  • Kim, Jae-Moung;Zhao, Zibin;Li, Hao-Wei;Sohn, Sung-Hwan
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.48-53
    • /
    • 2008
  • In the future, satellite communication systems, such as ISDB in Japan and DVB in Europe, are required to support higher transmission date rate for providing multimedia services including HDTV, high rate data communication etc. Considering the effectiveness of OFDM technique in efficient usage of frequency bandwidth and its robustness to the multi-path fading, several OFDM based standards have been proposed for satellite communication. However, the problem of high Peak to Average Power Ratio is one of the main obstacles for the implementation of OFDM based system. Many PAPR reduction schemes have been proposed for OFDM systems. Among these, the partial transmit sequences (PTS) is attractive as they obtain better PAPR property by modifying OFDM signals without distortion. In this paper, considering the complexity issue, we present a simplified minimum maximum (minimax) criterion and Sub-Optimal PTS algorithm to optimize the phase factor. This algorithm can be dynamically made tradeoff`f between performance and complexity on demand. In addition, we integrate guided scrambling (GS) with this method. Simulation in multiple antenna based OFDM system proves that the proposed Hybrid schemes can get much more PAPR reduction and do not require transmission of side information (SI). Thus it is helpful when implementing OFDM technique in satellite communication system.

  • PDF

PAPR Reduction in MIMO Spatial Multiplexing for transmission antennas (MIMO Spatial Multiplexing에서 안테나별 송신신호의 PAPR 감소 기법)

  • Bae, JaeHwui;Lee, GwangSoon;Ahn, ChungHyun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.466-469
    • /
    • 2011
  • 최근 무선전송에서 SISO(single input singe output) 시스템의 전송률이 샤논 한계(Shannon limit)에 근접함에 따라, 이것을 극복하여 더 높은 데이터 전송률을 얻기 위해 MIMO(multiple input multiple output) 시스템에 대한 연구가 활발하게 이루어지고 있다. 현재 진행 중인 DVB-NGH 시스템 표준화에도 전송률 개선을 위해 MIMO SM(Spatial Multiplexing) 기술에 대해 고려하고 있으며, 방송 시스템 내 송수신 안테나들 간 상관(correlation)이 발생하는 경우에 성능 개선을 위해 Precoding과 MIMO SM을 결합한 $2{\times}2$ 구조의 MIMO SM 방법이 제안되었다. 이 방법은 두 개의 송신안테나에 모두 16QAM 신호가 전송되는 경우와 두 송신안테나에 각각 16QAM, QPSK 신호가 전송되는 경우를 포함하고 있다. 이때 고출력 증폭기(high power amplifier) 전단에서 두 송신 안테나에 서로 다른 변조가 적용되는 경우에 PAPR(peak-to-average power ratio)이 달라서 고출력 증폭기 출력단의 송신전력 차이로 인해 각 신호의 방송권역(coverage)이 같지 않은 문제가 발생한다. 본 논문은 이러한 문제를 극복하기 위해 $2{\times}2$ MIMO SM 방식에서 송신 안테나별로 신호의 변조방식이 서로 다른 경우에 송신신호의 PAPR을 같게 하여 증폭기 출력단에서 각 송신신호의 전력이 동일하게 할 수 있는 방법을 제안한다. 제안한 방법은 수신기의 복잡도를 증가시키지 않으면서 두 송신 신호의 방송권역을 동일하게 한다.

  • PDF