• Title/Summary/Keyword: Peak shrinkage time

Search Result 11, Processing Time 0.021 seconds

POLYMERIZATION SHRINKAGE KINETICS OF SILORANE-BASED COMPOSITES (Silorane 복합레진의 중합수축의 동력학)

  • Kwon, Young-Chul;Lee, In-Bog
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.1
    • /
    • pp.51-58
    • /
    • 2010
  • Dental composites have improved significantly in physical properties over the past few decades. However, polymerization shrinkage and stress is still the major drawback of composites, limiting its use to selected cases. Much effort has been made to make low shrinking composites to overcome this issue and silorane-based composites have recently been introduced into the market. The aim of this study was to measure the volumetric polymerization shrinkage kinetics of a silorane-based composite and compare it with conventional methacrylate-based composites in order to evaluate its effectiveness in reducing polymerization shrinkage. Five commercial methacrylate-based (Beautifil, Z100, Z250, Z350 and Gradia X) and a silorane-based (P90) composites were investigated. The volumetric change of the composites during light polymerization was detected continuously as buoyancy change in distilled water by means of Archemedes' principle, using a newly made volume shrinkage measurement instrument. The null hypothesis was that there were no differences in polymerization shrinkage, peak polymerization shrinkage rate and peak shrinkage time between the silorane-based composite and methacrylate-based composites. The results were as follows: 1. The shrinkage of silorane-based (P90) composites was the lowest (1.48%), and that of Beautifil composite was the highest (2.80%). There were also significant differences between brands among the methacrylate-based composites. 2. Peak polymerization shrinkage rate was the lowest in P90 (0.13%/s) and the highest in Z100 (0.34%/s). 3. The time to reach peak shrinkage rate of the silorane-based composite (P90) was longer (6.7 s) than those of the methacrylate-based composites (2.4-3.1 s). 4. Peak shrinkage rate showed a strong positive correlation with the product of polymerization shrinkage and the inverse of peak shrinkage time (R = 0.95).

EFFECT OF LIGHT INTENSITY ON THE POLYMERIZATION RATE OF COMPOSITE RESIN USING REAL-TIME MEASUREMENT OF VOLUMETRIC CHANCE (광조사 강도가 복합레진의 중합반응속도에 미치는 영향에 관한 실시간 체적측정법을 이용한 연구)

  • La, Sung-Ho;Lee, In-Bog;Kim, Chang-Keun;Cho, Byeong-Hoon;Lee, Kwang-Won;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2002
  • Objectives : The aim of this study is to evaluate the effect of light intensity variation on the polymerization rate of composite resin using IB system (the experimental equipment designed by Dr. IB Lee) by which real-time volumetric change of composite can be measured. Methods : Three commercial composite resins [Z100(Z1), AeliteFil(AF), SureFil(SF)] were photopolymerized with Variable Intensity Polymerizer unit (Bisco, U.S.A.) under the variable light intensity (75/150/225/300/375/450mW$^2$) during 20 sec. Polymerization shrinkage of samples was detected continuously by IB system during 110 sec and the rate of polymerization shrinkage was obtained by its shrinkage data. Peak time(P.T.) showing the maximum rate of polymerization shrinkage was used to compare the polymerization rate. Results : Peak time decreased with increasing light intensity(p<0.05). Maximum rate of polymerization shrinkage increased with increasing light intensity(p<0.05). Statistical analysis revealed a significant positive correlation between peak time and inverse square root of the light intensity (AF:R=0.965, Zl:R=0.974, SF:R=0.927). Statistical analysis revealed a significant negative correlation between the maximum rate of polymerization shrinkage and peak time(AF:R=-0.933, Zl:R=-0.892, SF:R=-0.883), and a significant positive correlation between the maximum rate of polymerization shrinkage and square root of the light intensity (AF:R=0.988, Zl:R=0.974, SF:R=0.946). Discussion and Conclusions : The polymerization rate of composite resins used in this study was proportional to the square root of light intensity Maximum rate of polymerization shrinkage as well as peak time can be used to compare the polymerization rate. Real-time volume method using IB system can be a simple alternative method to obtain the polymerization rate of composite resins.

Polymerization Shrinkage and Stress of Silorane-based Dental Restorative Composite (Silorane-기질 치아 수복용 복합레진의 중합수축과 중합수축응력)

  • Lee, In-Bog;Park, Sung-Hwan;Kweon, Hyun-Jeong;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.182-188
    • /
    • 2013
  • The purpose of this study was to measure the volumetric polymerization shrinkage kinetics and stress of a silorane-based dental restorative composite and compare it with those of conventional methacrylate-based dental composites. Two methacrylate-based composites (Z250, Z350 flowable) and one silorane-based composite (P90) were investigated. The volumetric polymerization shrinkage of the composites during light curing was measured using a laboratory-made volume shrinkage measurement instrument based on the Archimedes' principle, and the polymerization stress was also determined with the strain gage method. The shrinkage of silorane-based composites (P90) was the lowest, and that of Z350 flowable was the highest. Peak polymerization shrinkage rate was the lowest in P90 and the highest in Z350 flowable. The time to reach peak shrinkage rate of P90 was longer than those of the methacrylate-based composites. The polymerization shrinkage stress of P90 was lower than those of the methacrylate-based composites.

Microwave hybrid sintering of NTC themistor (마이크로파 하이브리드 소결법에 의한 NTC 서미스터의 제조)

  • 최영락;안진용;안주삼;백동규;최승철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.508-512
    • /
    • 1998
  • The NTC thermistors were sintered by using microwave hybrid heating method at $1100^{\circ}C$~$1300^{\circ}C$ and those electrical properties were investigated. The obtained $B_{25^{\circ}C/85^{\circ}C}$ values from temperature dependence of electrical resisitivity were around 3100~3200 K which were almost the same values as conventionally sintered ones. Compared with conventional sintering process, this process could complete whole sintering process within 20 minutes. This the processing time and energy consumption could be reduced through this rapid heating by using microwave hybrid heating.t there were showed only two peaks, glycolide melting peak and lower molecular weight melting peak without lauryl alcohol. Conversion increased slowly with the reaction time up to 50 minutes, and then gave a sudden increase above that. The reaction time to disappear in glycolide melting peak during polymerization was shortened with the increase of lauryl alcohol content. Zero-shear viscosity of polyglycolic acid decreased with the increase of free acid content in glycolide.ssional energy and bending hysteresis increased. \circled3 Surface characteristics such as friction coefficient and thickness variation of highly shrinkage fabrics became relatively roughened state. \circled4 Since stiffened and roughened characteristics of highly shrinkage fabrics, drapabilities of them were significantly lowered. Additionally thermal insulation property of high shrinkage fabric was higher than that of low shrinkage fabric due to bulky and thickened feature. From the results, it is considered that the silk fabrics with high filling shrinkage have the good bulkiness and heat keeping properties and thus they have the suitable characteristics for high quality men's and women's formal garments.

  • PDF

EFFECT OF INTERMITTENT POLYMERIZATION ON THE RATE OF POLYMERIZATION SHRINKAGE AND CUSPAL DEFLECTION IN COMPOSITE RESIN (복합 레진의 간헐적 광중합 방법이 중합 수축 속도와 치아의 교두 변위에 미치는 영향)

  • Kim, Min-Kyung;Park, Sung-Ho;Seo, Deog-Gyu;Song, Yun-Jung;Lee, Yoon;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.4
    • /
    • pp.341-351
    • /
    • 2008
  • This study investigated the effect of intermittent polymerization on the rate of polymerization shrinkage and cuspal deflection in composite resins. The linear polymerization shrinkage of each composite was measured using the custom-made linometer along with the light shutter specially devised to block the light at the previously determined interval. Samples were divided into 4 groups by light curing method; Group 1) continuous light (60s with light on); Group 2) intermittent light (cycles of 3s with 2s light on & 1s with light off for 90s): Group 3) intermittent light (cycles of 2s with 1s light on & 1s with light off for 120s); Group 4) intermittent light (cycles of 3s with 1s light on & 2s with light off for 180s). The amount of linear polymerization shrinkage was measured and its maximum rate (Rmax) and peak time (PT) in the first 15 seconds were calculated. For the measurement of cuspal deflection of teeth, MOD cavities were prepared in 10 extracted maxillary premolars. Reduction in the intercuspal distance was measured by the custom-made cuspal deflection measuring machine. ANOVA analysis was used for the comparison of the light curing groups and t-test was used to determine significant difference between the composite resins. Pyramid showed the greater amount of polymerization shrinkage than Heliomolar (p < 0.05). There was no significant difference in the linear polymerization shrinkage among the groups. The Rmax was group 4 < 3, 2 < 1 in Heliomolar and group 3 < 4 < 2, 1 in Pyramid (p < 0.05). Pyramid demonstrated greater cuspal deflection than Heliomolar. The cuspal deflection in Heliomolar was group 4 < 3 < 2, 1 and group 4, 3 < 2, 1 in Pyramid (p < 0.05). It was concluded that the reduced rate of polymerization shrinkage by intermittent polymerization can help to decrease the cuspal deflection.

Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum (알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성)

  • Hong-Seop Kim;Kyoung-Su Shin;Do-Gyeum Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • In this study, the mechanical properties of PHC pile concrete using alpha-type hemihydrate gypsum were evaluated. As the replacement ratio of alpha-type hemihydrate gypsum increased, the setting time rapidly accelerated. In particular, when replacement ratio exceeded 20 %, the setting time was shortened due to rapid hydration reaction, making it impossible to secure working time. As the replacement ratio of alpha-type hemihydrate gypsum increased, the ettringite and gypsum peaks tended to increase, and it is believed that the shrinkage of concrete decreased due to the increase in the ettringite peak. At a As the replacement ratio of 5 to 15 % for alpha-type hemihydrate gypsum, the compressive strength increased or was found to be equivalent to that of OPC. But at 20 % substitution, workability deteriorated due to rapid setting, so use of the 5 to 15 % range is considered appropriate.

Setting Behavior of Polystyrene Mortars with Elapsed Curing Time (폴리스티렌 모르타르의 양생재령에 따른 경화거동)

  • Choi Nak-Woon;Kim Han-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.54-60
    • /
    • 2004
  • This study deals with the setting behavior of polystyrene mortars using waste expanded polystyrene(EPS) solution-based binders. The binders for polystyrene mortars are made by mixing crosslinking agent with EPS solutions prepared by dissolving EPS in styrene. Polystyrene mortars are prepared with various EPS concentrations of EPS solutions and crosslinking agent contents, subjected to a dry curing, and tested for working life, peak exotherm temperature and 10h-length change. From the test results, He working lives of polystyrene mortars are shortened with raising EPS concentration of EPS solution and crosslinking agent content. Low-shrinkage or non-shrinkage polystyrene mortars could be obtained by adjusting EPS concentration of EPS solution and crosslinking agent content.

Variation of Bilinear Stress-Crack Opening Relation for Tensile Cracking of Concrete at Early Ages (초기재령에서 콘크리트 인장균열에 대한 쌍선형 응력-균열 개구 관계의 변화)

  • Kwon, Seung-Hee;Choi, Kang;Lee, Yun;Park, Hong-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.427-435
    • /
    • 2010
  • One of the most vulnerable properties in concrete is tensile cracking, which usually happens at early ages due to hydration heat and shrinkage. In order to accurately predict the early age cracking, it needs to find out how stress-crack opening relation is varying over time. In this study, inverse analyses were performed with the existing experimental data for wedge-splitting tests, and the parameters of the softening curve for the stress-crack opening relation were determined from the best fits of the measured load-CMOD curves. Based on the optimized softening curve, variation of fracture energy over time was first examined, and a model for the stress-crack opening relation at early ages was suggested considering the found feature of the fracture energy. The model was verified by comparisons of the peak loads, CMODs at peak loads, and fracture energies obtained from the experiments and the inverse analysis.

Effect of Curvature on Deformation caused by Thermal Plate Forming (열간가공의 변형에 미치는 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.67-72
    • /
    • 2011
  • This study had the goal of investigating the effect of the curvature along the heating line on the transverse angular distortion of plates having an initial curvature from line heating. A thermo-elasto-plastic analysis was carried out using 54 models with various radii of curvature, plate thicknesses, and heating speeds. The results show the effect of the curvature along the heating line on the angular distortion in relation to changes in the magnitudes of the curvature, heating speed, and plate thickness. The present numerical results show that the time history of the angular distortion after cooling and reaching the final deformed shape for a plate having an initial curvature is quite different from that of a flat plate. This emphasized the importance of considering the curvature effect on the transverse angular distortion. From the viewpoint of the curvature effect on the deformation, it has been seen that the curvature does not affect the transverse shrinkage. In this study the predicting formula for the transverse angular distortion was derived through a regression analysis. It showed that as the curvature increased, the angular distortion was reduced because of the higher bending rigidity at the same heat input parameter, and the peak points moved toward the origin as the curvature increased.

Early age behavior analysis for reinforced concrete bridge pier

  • Wang, Xianfeng;Li, Dawang;Han, Ningxu;Xing, Feng
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1041-1051
    • /
    • 2016
  • In this study, the construction of a reinforced concrete bridge pier was analyzed from durability point of view. The goal of the study is to analyze the crack iniation condition due to construction and present some recommendations for construction conditions of the reinforced concrete bridge pier. The bridge is located at the western port area of Shenzhen, where the climate is high temperature and humidity. To control the cracking of concrete, a construction simulation was carried out for a heat transfer problem as well as a thermal stress problem. A shrinkage model for heat produced due to cement hydration and a Burger constitutive model to simulate the creep effect are used. The modelling based on Femmasse(C) is verified by comparing with the testing results of a real underground abutment. For the bridge pier, the temperature and stress distribution, as well as their evolution with time are shown. To simulate the construction condition, four initial concrete temperatures ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$) and three demoulding time tips (48h, 72h, 96h) are investigated. From the results, it is concluded that a high initial concrete temperature could result in a high extreme internal temperature, which causes the early peak temperature and the larger principle stresses. The demoulding time seems to be less important for the chosen study cases. Currently used 72 hours in the construction practice may be a reasonable choice.