• Title/Summary/Keyword: Peak resonant frequency

Search Result 112, Processing Time 0.023 seconds

Comb Bandwidth generating in Frequency-shifted Feedback Laser (주파수 이동 되먹임 레이저에서 발생하는 Comb의 대역폭)

  • 지명훈;황대석;김규식;이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.535-538
    • /
    • 2002
  • We simulated Frequency-shifted feedback laser using AOM inside the cavity. We analyze instantaneous oscillation frequency at peak spectral intensity and Comb bandwidth of output spectrum from Wigner-Ville distribution of intracavity electric field. The Comb bandwidth is defined as the product of the saturation-broadened bandwidth and the total resonant modes contributing to FSF operation.

  • PDF

Design of a Modified Half Wavelength Loaded Line Antenna Controllable Resonant Frequency and Input Impedance (공진 주파수와 입력 임피던스를 조절할 수 있는 변형된 반파장 로디드 라인 안테나 설계)

  • Jung Woo-Jae;Jung Byungwoon;Kang Gi-Cho;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.973-981
    • /
    • 2005
  • A modified half wavelength loaded line antenna is designed and implemented for mobile terminal applications. The antenna is constructed with a radiating element of half wavelength loaded line structure, dielectric substrate, feeding post and two shorting posts on the experimental PCB. The shorting posts are located at each side of the radiating element and lumped inductance elements are on between each shorting post and ground of PCB. By controlling value of inductors, one can adjust resonant frequency and input impedance respectively. Within inductance value of 12 nH, the antenna can have wide operating range of $1,470\~2,660\;MHz$ and good impedance matching. The measured peak gains are between -0.45 dBi and 2.03 dBi for the operating band.

Electrically Small Eighth-Mode Substrate-Integrated Waveguide(EMSIW) Antenna Loading Complementary Split Ring Resonator(CSRR) (상보적 분할 링 공진기를 이용한 전기적으로 작은 1/8 모드 기판 집적형 도파관 안테나)

  • Kang, Hyunseong;Sam, Somarith;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.686-693
    • /
    • 2013
  • Based on a substrate integrated waveguide(SIW) and a complementary split ring resonator(CSRR), electrically small antennas are proposed in this paper. Antenna's electrical size is reduced by introducing both CSRR and the eighth-mode substrate integrated waveguide(EMSIW). The EMSIW occupies only 12.5 % of the conventional SIW at the same dominant resonant frequency. In addition, the resonant frequency of the antenna is varied by rotating the CSRR on the EMSIW while keeping the same radiation patterns. The resonant frequency is changed from 4.74 GHz to 5.07 GHz by varying orientation of the CSRR from 0 to 360 degree. Unidirectional radiation patterns are observed and the measured peak gains are from 4.50 to 5.92 dBi.

A Study on Modeling and Damping of High-Frequency Leakage Currents in PWM Inverter Feeding an Induction Motor (PWM 인버어터로 구동되는 유도 전동기의 고주파 누설전류 모델링 및 억제에 관한 연구)

  • 이재호;전진휘;홍정표;강필순;박성준;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.18-22
    • /
    • 1998
  • A PWM inverter with an induction motor often has a problem with a high frequency leakage current that flows through stray capacitor between stator windings and a motor frame to ground. This paper presents an equivalent circuit for high frequency leakage currents in PWM inverter feeding an induction motor, which forms an LCR series resonant circuit. A conventional common mode ckoke or reactor in series between the ac terminals of a PWM inverter and those of an ac motor is not effective to reduce the rms and average values of the leakage current, but effective to reduce the peak value. Furthermore, this paper proposes a leakage current damper which is different in damping principle from the conventional common mode choke. It is shown theoretically and experimentally that the leakage current damper is able to reduce the rms value of the leakage current to 25%, where the core used in the leakage current damper is smaller than that of the conventional common-mode choke

  • PDF

An Experimental Study on Heat Transfer in the Pulsating Pipe Flow (원관내 맥동유동의 열전달에 관한 실험적 연구)

  • Kim, Hi Yong;Kim, Chang Kee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.78-85
    • /
    • 1991
  • An experimental result for heat transfer of pulsating turbulent pipe flow was presented under the condition of fully developed dynamic regime and uniform wall heat flux. Experiments were performed at following conditions ; Inlet time-averaged Reynolds number varied from 5000 to 11000; The peak pressure fluctuation were 1.3, 2.3 and 3.5 percent of the mean pressure; Pulsating frequency ranged from 53 Hz to 320 Hz The measurements showed that the effect of pulsation on local heat transfer is greater at downstream, in which pulsating source exists, than upstream and the heat transfer rate, averaged over the pipe length, was higher or lower than in an equivalent non-pulsating flow according to the pulsating conditions. In addition, the significant change of heat transfer rate was observed in acoustically resonant conditions, when the pulsating frequency of the flow corresponded to the pipe natural frequency.

  • PDF

Classification of Normal Subjects and Pulmonary Function Disease Patients using Tracheal Respiratory Sound Detection System (기관 호흡음 검출 시스템을 이용한 정상인과 폐기능 질환자의 분류)

  • Im, Jae-Jung;Lee, Yeong-Ju;Jeon, Yeong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.4
    • /
    • pp.220-224
    • /
    • 2000
  • A new auscultation system for the detection of breath sound form trachea was developed in house. Small size microphone(panasonic pin microphone) was encapsuled in a housing for resonant effect, and hardware for the sound detection was fabricated. Pulmonary function test results were compared with the parameters extracted from frequency spectrum of breath sound obtained from the developed system. Results showed that the peak frequency and relative ratio of integral values between low(80∼400Hz) and high(400∼800Hz) frequency ranges revealed the significant differences. Developed system could be used for distinguishing normal subject and the patients who have pulmonary disease.

  • PDF

Enhanced impact echo frequency peak by time domain summation of signals with different source receiver spacing

  • Ryden, Nils
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.59-72
    • /
    • 2016
  • The Impact Echo method can be used to measure the thickness of concrete plate like structures. Measurements are based on the identification of a clear thickness resonance frequency which can be difficult in very thick or highly attenuative plates. In this study the detectability of the measured resonant frequency is enhanced by time domain summation of signals with different source receiver spacing. The proposed method is based on the spatial and temporal properties of the first higher symmetric zero group velocity Lamb mode (S1-ZGV) which are described in detail. No application dependent tuning or filtering is needed which makes the method robust and suitable for implementation in automatic IE thickness measurements. The proposed technique is exemplified with numerical data and field data from a thick concrete wall and a highly attenuative asphalt concrete layer.

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.

Study on the D.C Excitation Commutation Method of SRM for Reduction of Vibration/Acoustic Noise (SRM의 진동.소음의 저감을 위한 직류여자 전류방식에 관한 연구)

  • 오석규;추영배;이일천;황영문
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.147-150
    • /
    • 1999
  • SRM drives generate large vibration and acoustic noise because it is commutated individually by step pulse m.m.f on each phase pole. The frequency or motor speed of peak vibrations and acoustic noises is coincided with the natural resonant frequency of the magnetic structure and frame material. And this radial vibration force is induced on the phase commutation region. This paper suggest the new electromagnetic structure of SRM with auxiliary commutation winding excited d.c e.m.f.. This phase- commutating winding is coupled magnetically between one phase winding and the vibrating force is falled down. As a result, SRM with d.c exciting commutation winding is very useful to reduce vibration and acoustic noise of SRM drive.

  • PDF

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.