• Title/Summary/Keyword: Peak particle velocity(PPV)

Search Result 20, Processing Time 0.019 seconds

The Role of PPV and PVS in Controlled Blasting (제어발파의 설계 및 관리 과정에서의 PPV와 PVS의 역할)

  • Choi, Byung-Hee;Ryu, Chang-Ha;Hwang, Hyun-Joo;Choi, Yong-Kun;Ahn, Myung-Seog
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The safe level for residential structures has usually been prescribed as just 'particle velocity' in various specifications in Korea. It implies that there is a possibility of interpreting the 'particle velocity' as the PPV (Peak Particle Velocity), PVS (Peak Vector Sum), or something else, depending on the interpreter. As a result, there have always been some difficulties in both designing a controlled blasting and controling the blast-induced ground vibrations. This paper is intended to show what the role of the safe level criteria such as PPV or PVS is, and also how we should use the concept of the scaled distance equation in a controlled blast design. The paper also emphasizes the importance of the allowable level for various residential structures and its uses in each stage of the controlled blast design.

Prediction of Blast Vibration in Quarry Using Machine Learning Models (머신러닝 모델을 이용한 석산 개발 발파진동 예측)

  • Jung, Dahee;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.508-519
    • /
    • 2021
  • In this study, a model was developed to predict the peak particle velocity (PPV) that affects people and the surrounding environment during blasting. Four machine learning models using the k-nearest neighbors (kNN), classification and regression tree (CART), support vector regression (SVR), and particle swarm optimization (PSO)-SVR algorithms were developed and compared with each other to predict the PPV. Mt. Yogmang located in Changwon-si, Gyeongsangnam-do was selected as a study area, and 1048 blasting data were acquired to train the machine learning models. The blasting data consisted of hole length, burden, spacing, maximum charge per delay, powder factor, number of holes, ratio of emulsion, monitoring distance and PPV. To evaluate the performance of the trained models, the mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) were used. The PSO-SVR model showed superior performance with MAE, MSE and RMSE of 0.0348, 0.0021 and 0.0458, respectively. Finally, a method was proposed to predict the degree of influence on the surrounding environment using the developed machine learning models.

A Study on the Vibration Reduction of Borehole by the Receive Distance (수진 거리에 따른 방진구의 진동 저감 연구)

  • Song, Jeong-Un;Kim, Seung-Kon;Hong, Woong-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.3
    • /
    • pp.169-176
    • /
    • 2014
  • The purpose of this study is to estimate the vibration reduction effect of the borehole which is controlled the vibration propagation in the ground. For this study, we measured the vibration velocity before and after the borehole installation. The results are as follows: The peak particle velocity(PPV) and peak vector sum(PVS) was reduced by the borehole. And also, the deviation of vibration velocity before and after the borehole installation showed large values in longitudinal and vertical component depending on the receive distance, and increased depending on the size of vibration energy. Finally, the vibration isolation efficiency was 25~35 percentage at 1.5m receive distance, and was 4~14 percentage at 3.0m receive distance. It was found that the vibration isolation efficiency was good in small vibration energy, but was not good at long receive distance.

Measurements and Data Processing for Blast Vibrations and Air-blasts (발파진동 및 발파소음의 측정 및 자료처리)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.29-50
    • /
    • 2015
  • Safe blast criteria based on the concept of scaled distances can be obtained from the statistical analysis on measured peak particle velocity data of blast vibrations. Two types of scaled distance widely used in Korea are the square root scaled distance (SRSD) and cube root scaled distance (CRSD). In contrast to SRSD scheme, however, the function of maximum charge per delay for CRSD increases without bound after the intersection point of these two functions despite of the similar goodness of fits. To prevent structural damage that may be caused by the excessive charge in the case of CRSD, it is suggested that CRSD be used within a specified distance slightly beyond the intersection point. On the other hand, there are several attempts that predict vibration level(VL) from the peak particle velocity(PPV) or estimate VL based on the scaled distances without considering their frequency spectra. It appears that these attempts are conducted in blasting contracts only for the purpose of satisfying the environment-related law, which mainly deals with the annoyance aspects of noises and vibrations in human life. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only between the waves with the same or very similar frequency spectra. Finally, it is a known fact that structural damage due to ground vibration is related to PPV level, the safety level criteria for structures should be defined by allowable PPV levels together with their zero crossing frequencies (ZCF).

Blast vibration of a large-span high-speed railway tunnel based on microseismic monitoring

  • Li, Ao;Fang, Qian;Zhang, Dingli;Luo, Jiwei;Hong, Xuefei
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.561-569
    • /
    • 2018
  • Ground vibration is one of the most undesirable effects induced by blast operation in mountain tunnels, which could cause negative impacts on the residents living nearby and adjacent structures. The ground vibration effects can be well represented by peak particle velocity (PPV) and corner frequency ($f_c$) on the ground. In this research, the PPV and the corner frequency of the mountain surface above the large-span tunnel of the new Badaling tunnel are observed by using the microseismic monitoring technique. A total of 53 sets of monitoring results caused by the blast inside tunnel are recorded. It is found that the measured values of PPV are lower than the allowable value. The measured values of corner frequency are greater than the natural frequencies of the Great Wall, which will not produce resonant vibration of the Great Wall. The vibration effects of associated parameters on the PPV and corner frequency which include blast charge, rock mass condition, and distance from the blast point to mountain surface, are studied by regression analysis. Empirical formulas are proposed to predict the PPV and the corner frequency of the Great Wall and surface structures due to blast, which can be used to determine the suitable blast charge inside the tunnel.

Consideration on the Relation between Vibration Level and Peak Particle Velocity in Regulation of Ground Vibration (지반진동 규제기준에서 진동레벨과 진동속도의 상호관계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • The only law related to airblast and ground vibration control in Korea is the Noise and Vibration Control Act enforced by the Ministry of Environment. But this law mainly deals with the annoyance aspects of noises and vibrations in ordinary human life. Hence, the law defines the safety criteria of ground vibration as the vibration level (VL) of dB(V) unit. The ground vibrations produced from blasting, however, have the unique characteristics that can be shown in shock vibrations, and the duration is also very short compared to the vibrations from machinery, tools or facilities. Hence, vibration regulations for blasting operations usually define the safety criterion as the peak particle velocity (PPV) considering the effect of ground vibrations to structural damage. Notwithstanding, there are several attempts that predict VL from PPV or estimate VL based on the scaled distances (SD; in unit of $m/kg^{1/2}$ or $m/kg^{1/3}$) without considering their frequency spectra. It appears that these attempts are conducted mainly for the purpose of satisfying the law in blasting contracts. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only for the waves with the same or very similar frequency spectra.

Stability Assessment of Concrete Lining and Rock Bolts of the Adjacent Tunnel by Blast-Induced Vibration (발파진동이 인접한 터널의 콘크리트 라이닝과 록볼트의 안정성에 미치는 영향평가)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.33-45
    • /
    • 2007
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Parametric study on the impact of traffic-induced vibrations on residential structures in Istanbul, Turkey

  • A. Yesilyurt;M.R. Akram;A. Can Zulfikar;H. Alcik
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.87-100
    • /
    • 2024
  • Traffic-induced vibrations (TIVs) possess the potential to induce structural damage in both historical and critical edifices. Recent investigations have underscored the adverse impact of TIVs within buildings, manifesting as a deleterious influence on the quality of life and operational efficiency of occupants. Consequently, these studies have dichotomized TIVs into two primary limit categories: the threshold for vibrations capable of causing structural damage and the limit values associated with human comfort. In this current research endeavor, an exhaustive analysis of peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), and the frequency spectrum of ground motions originating from diverse traffic sources has been conducted. Furthermore, the detrimental repercussions of these vibrations on structures, gauged through the assessment of the peak particle velocity (PPV) parameter, have been systematically evaluated. The findings of this study elucidate that TIVs within the examined structures do not attain magnitudes conducive to structural compromise; however, the levels surpassing human comfort limits are evident, attributable to specific sources and distances. Moreover, this investigation sheds light on the absence of comprehensive criteria and guidelines pertaining to the assessment of TIVs in structures within the Turkish Building Seismic Design Code 2018. It seeks to raise awareness among building constructors about the critical importance of addressing this issue, emphasizing the imperative for guidelines in mitigating the impact of TIVs on both structural integrity and human well-being.

A Study on the Evaluation of Shock Vibration by a Medium Characteristics (매질특성에 따른 충격진동평가에 관한 연구)

  • Song, Jeong-Un;Hong, Woong-Ki;Kim, Seung-Kon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.5
    • /
    • pp.641-649
    • /
    • 2011
  • The ground vibration has effect on the human body and the nearby structure. However, it was very difficult to estimate the damage of structure caused by the vibration. Especially, ground vibration must be estimated on the bottom of structure because it was made up of several mediums. In this study, it was considered about the shock vibration on medium characteristics as calculating the peak particle velocity and analysing the vibration waveform. The results are as follows : Firstly, the correlation coefficient of PPV(Peak Particle Velocity) and SD(Scaled Distance) was very high at the vertical component, which was represented to 0.991 in general ground medium and each 0.989, 0.961, 0.925 in concrete medium. And also, the vibration waveform at the vertical component was very good in all mediums. Secondly, the vibration waveform at the longitudinal component was represented to a great amplitude and phase difference in all mediums. It was considered that the vibration waveform occurred the damping when particle velocity by shock vibration was propagated through other medium. Thirdly, the vibration waveform in concrete medium was represented to variation of amplitude in the order of RC medium, NC=H medium, NC=S medium at the vertical component. It was considered that the particle velocity propagated fast when a medium have a big strength and density.

A Study on the Prediction Method of Blasting Vibration (발파진동 예측방법에 관한 연구)

  • Lee, Yeon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.361-365
    • /
    • 2006
  • In order to predict method of blasting vibration in ground and it's resident located around blasting field in urban area, blasting vibration characteristics were measured the vibration velocity(cm/sec), vibration acceleration($cm/sec^2$), vibration acceleration level(dB) and vibration level(dB(V)). The charged powder were used to 1.25kg and measuring sites were 25 points front 4m to 90m at the ground. The correlation of vibration velocity, vibration acceleration, vibration acceleration level and vibration level by square root scaled distance and cube root scaled distance were investigated. The correlation of PPV(peak particle velocity) velocity by SRSD(square root scaled distance) and CRSD(cube root scaled distance) was 0.85 and 0.86 and the correlation of PVS(peak vector sum) velocity by SRSD and CRSD was 0.82. Also vibration acceleration, vibration acceleration level and vibration level by SRSD and CRSD was 0.61, 0.62 and 0.82, respectively. As results, the vibration velocity and vibration level(dB(V)) was showed good correlation, but the vibration acceleration and vibration acceleration level was not showed good correlation.

  • PDF