• Title/Summary/Keyword: Peak operation

Search Result 812, Processing Time 0.03 seconds

Design and implementation of 3 kW Photovoltaic Power Conditioning System using a Current based Maximum Power Point Tracking (전류형 MPPT를 이용한 3 kW 태양광 인버터 시스템 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1796-1801
    • /
    • 2008
  • In this paper, a new current based maximum power point tracking (CMPPT) method is proposed for a single phase photovoltaic power conditioning system and the current based MPPT modifies incremental conductance method. The current based MPPT method makes the entire control structure of the power conditioning system simple and uses an inherent current source characteristic of solar cell array. In addition, digital phase locked loop using an all pass filter is introduced to detect phase of grid voltage as well as peak voltage. Controllers about dc/dc boost converter, dc-link voltage, dc/ac inverter is designed for a coordinated operation. Furthermore, PI current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. 3kW prototype photovoltaic power conditioning system is built and its experimental results are given to verify the effectiveness of the proposed control schemes.

A Framework for Investment Justification and Economic Operation- (한국의 다목적댐 수력발전 체계-투자의 정당화와 경제적 운영-)

  • 이승규;박용삼
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.1
    • /
    • pp.157-157
    • /
    • 1987
  • Hydro-electric power generation from multi-purpose dams has been playing important roles in the electric power supply network in Korea. Although the total share of hydro power in national electricity supply now becomes very small, the peak-shaving and frequency control capability of hydro power helps the power company enormously in maintaining the quality of power. But since the company that builds and operates the multi-purpose dams in Korea has to sell all the electricity produced to the monopolistic utility, there have been various problems in justifying the investment, designing pricing mechanism, and controlling operations of the power plants. In addition, economic evaluation of the hydro power has been distorted by a variety of reasons and hence it has been very difficult to encourage effective development and utilization of national water resources. To make the problem worse, both parties are public companies with X-inefficiency problems. Thus, changing environment requires to reengineer the system that governs hydro power generation. We address the problems of Korean hydro-electric power generation system in four areas: the investment justification process, the operations decison right of the hydro power plants, the pricing of the purchased-power, and the negotiation of contract revision. Then we propose improvement directions of new hydro-electric power system in view of static and dynamic efficiency, X-inefficiency and equity.

A Study on Performance Improvement of Hybrid Energy Storage System for Mild HEV (마일드 하이브리드 차량용 복합형 에너지 저장장치의 성능개선에 관한 연구)

  • Lee, Back-Haeng;Shin, Dong-Hyun;Kim, Hee-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1763-1769
    • /
    • 2007
  • To improve the cycle-life and efficiency of an energy storage system for HEV, a dynamic control system consisted of a switch between a battery and an ultracapacitor module is proposed, which is appropriate for mild hybrid vehicle with 42V power net. The switch can be controlled based on the status of the battery and the ultracapacitor module, and a control algorithm that could largely decrease the number of high charging current peak is also implemented. Therefore the cycle life of the battery can be improved such that it is suitable for a mild hybrid vehicle with frequent engine start-stop and regenerative-braking. Also, by maximizing the use of the ultracapacitor, the system efficiency during high current charging and discharging operation is improved. Finally, this system has the effects that improves the efficiency of energy storage system and reduces the fuel consumption of a vehicle. To verify the validity of the proposed system, this paper presented cycles test results of different energy storage systems: a simple VRLA battery, hybrid energy Pack (HEP, a VRLA battery in Parallel with Ultracapacitor) and a HEP with a switch that controlled by energy management system (EMS). From the experimental result, it was proved the effectiveness of the algorithm.

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

Operational Method of Superconducting Fault Current Limiter with Reduction Function of Asymmetric Fault Current (비대칭 고장전류 저감 기능을 갖는 초전도 한류기 동작 방안)

  • Kim, Chang-Hwan;Seo, Hun-Chul;Kim, Kyu-Ho;Kim, Chul-Hwan;Rhee, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.10
    • /
    • pp.56-62
    • /
    • 2014
  • When fault currents contain decaying DC offset, the peak value of the fault current in the first cycle of the fault period is higher than the fault current during the steady-state period. To reduce the asymmetric fault current, this paper proposes an operation scheme using the series connection of two hybrid type Superconducting Fault Current Limiters (SFCLs) : an auxiliary SFCL and a main SFCL. The proposed method calculates the fault angle by comparing the zero-crossing time with fault detection time. According to the fault angle calculated, an auxiliary SFCL operates to reduce an asymmetric fault current during half a cycle after fault occurrence. After this process, the fault current is limited by a main SFCL. To confirm the usefulness of the proposed method, case studies using Electro-Magnetic Transients Program (EMTP)/Alternative Transient Program (ATP) Draw are perfomed.

Hydro-electric Power Generation System of Multi-purpose Dams in Koresa - A Framework for Investment Justification and Economic Operation - (한국의 다목적댐 수력발전 체계 - 투자의 정당화와 경제적 운영 -)

  • 이승규;박용삼
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.157-173
    • /
    • 1995
  • Hydro-electric power generation from multi-purpose dams has been playing important roles in the electric power supply network in Korea. Although the total share of hydro power in national electricity supply now becomes very small, the peak-shaving and frequency control capability of hydro power helps the power company enormously in maintaining the quality of power. But since the company that builds and operates the multi-purpose dams in Korea has to sell all the electricity produced to the monopolistic utility, there have been various problems in justifying the investment, designing pricing mechanism, and controlling operations of the power plants. In addition, economic evaluation of the hydro power has been distorted by a variety of reasons and hence it has been very difficult to encourage effective development and utilization of national water resources. To make the problem worse, both parties are public companies with X-inefficiency problems. Thus, changing environment requires to reengineer the system that governs hydro power generation. We address the problems of Korean hydro-electric power generation system in four areas: the investment justification process, the operations decison right of the hydro power plants, the pricing of the purchased-power, and the negotiation of contract revision. Then we propose improvement directions of new hydro-electric power system in view of static and dynamic efficiency, X-inefficiency and equity.

  • PDF

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.

PERFORMANCE OF AN OSCILLATING SUBSOILER IN BREAKIN HARD PAN

  • Bandalan, E.P.;Gupta, C.P.;Salokhe, V.M.;Niyamapa, T.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1043-1052
    • /
    • 1993
  • Field experiments were conducted to determine the optimum combination of performance parameters of a single-shank, tractor-mounted oscillating subsoiler. Tests were conducted at frequencies of oscillation of 3.7 , 5.67, 7.58, 9.48 and 11.456Hz ; amplitudes of 18, 21, 23.5, 34 and 36.5 mm ; and forward speeds of 1.84, 2.19 and 3.42 kmph at moisture content close to the plastic limit of the soil. It was observed that there was a reduction in average draft but an a increase in average total power requirement for oscillating than non-oscillating subsoiling. The draft and power ratios were significantly affected by the forward speed, frequency and amplitude. Their combined interaction expressed in terms of the velocity ratio parameter( the ratio of peak tool velocity and forward speed) however has the strongest influence. At the same velocity ratio, the draft reduction and power increase were less at higher amplitude of oscillation . As the oscillating frequency is increased toward the soil resonance the draft requirement becomes less. For the field conditions tested. the optimum operation was obtained at an amplitude of 36.5mm, frequency of 9.48Hz and speed of 2.19 kmph with a draft ratio of 0.33 and a power ratio of only 1.24.

  • PDF

OBSERVATIONS OF TERRESTRIAL NIGHTGLOW (MEINEL BANDS) AT KING SEJONG STATION, ANTARCTICA

  • Won, Young-In;Cho, Young-Min;Lee, Bang-Yong;Kim, Jhoon;Chung, Jong-Kyun;Kim, Yong-Ha
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.149-158
    • /
    • 1999
  • A Fourier Transform Spectrometer was used to study upper mesospheric thermodynamic by observing the hydroxyl(OH) emission. Rocket-born and satellited-born photometers place the peak emission near 87 km. The instrument was installed in February 1999 at King Sejong station ($62.22^{circ}S,301.25^{circ}E$), Antarctica and has been in routine operation since then. An intensive operational effort has resulted in a substantial data between April and June, 1999. A harmonic analysis was carried out to examine information on the tidal characteristics. The measured amplitudes of the 12-hour oscillation are in the range of 2.4-3.7 K, which are in resonable agreement with theoretical model outputs. The harmonic analysis also revealed 8-hour oscillation which is not expected from the traditional theoretical studies. In addition, the observed 8-hour oscillations are apparent and sometimes dominate the temperature variation in the upper mesosphere.

  • PDF

Design and Implementation of a 9V Mini-Electrocardiograph(ECG) system (9V 초소형 심전도계의 설계 및 구현)

  • Song, Myeong-Kil;Park, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1130-1133
    • /
    • 2008
  • In this paper, a mini-Electrocardiograph(ECG) system operated by a general 9V alkaline battery is designed and implemented. The manufactured ECG consists of the instrumentation amplifier stage for detecting and amplifying the heart signal, the high pass filter(HPF), the low pass filter(LPF), the differentiator cirduit, and the peak detector. The detected heart signal through three leads is displayed cleanly on the oscilloscope, which shows the good operation of our ECG. As the detected heart signal is digitalized and displayed on the small LCD unit, the convenience of easy checkup and portability of the implemented ECG can be largely improved. Therefore, whenever and wherever anyone may checkup his/her cardiac state with ease.