• Title/Summary/Keyword: Peak load management

Search Result 144, Processing Time 0.027 seconds

Energy Efficient Cell Management by Flow Scheduling in Ultra Dense Networks

  • Sun, Guolin;Addo, Prince Clement;Wang, Guohui;Liu, Guisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4108-4122
    • /
    • 2016
  • To address challenges of an unprecedented growth in mobile data traffic, the ultra-dense network deployment is a cost efficient solution to off-load the traffic over other small cells. However, the real traffic is often much lower than the peak-hour traffic and certain small cells are superfluous, which will not only introduce extra energy consumption, but also impose extra interference onto the radio environment. In this paper, an elastic energy efficient cell management scheme is proposed based on flow scheduling among multi-layer ultra-dense cells by a SDN controller. A significant power saving was achieved by a cell-level energy manager. The scheme is elastic for energy saving, adaptive to the dynamic traffic distribution in the office or campus environment. In the end, the performance is evaluated and demonstrated. The results show substantial improvements over the conventional method in terms of the number of active BSs, the handover times, and the switches of BSs.

A Study On heating load analysis and demand side management on winter peak period (동계피크시 계약종별 난방부하분석 및 수요관리 대응방안 연구)

  • Yun, Young-Bum;Kang, Dong-Pil;Lee, Kyung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.588-589
    • /
    • 2011
  • `10. 1. 13일 한파지속에 따른 16년 만에 동계피크가 발생 하였으며, '11. 1. 17일 73,137MW로 2년 년속 동계피크 경신으로 우리나라도 이젠 동계피크 발생국가에 해당된다고 볼 수 있다. 이는 경기회복에 따른 산업용전력의 증가가 동계피크 발생을 견인하였지만 타 에너지원에 비해 전기요금이 저렴하기 때문에 난방연료원이 가스나 가름에서 전기로 지속적으로 전환된 것이 가장 큰 원인이라고 보여 진다. 효과적인 전력수요관리를 위해서는 계약종별별로 부하량과 난방부하량을 측정해서 분석하는 것이 무엇보다 중요하다 하겠다. 그렇지만 실시간으로 계약종별로 부하량 자료를 얻을 수 있는 것은 현재 고압고객의 AMR계량시스템자료가 있으나 이는 고압전체의 85% 대 수준의 자료를 읽어올 뿐 전제 부하를 대변할 수 없으므로 발전단 부하를 계약종별로 적절하게 안분하는 것이 필요하다고 볼 수 있다. 8760시간대별 부하분석을 위해서는 발전단 부하와 배전단부하를 근간으로 고압고객의 원격자동검침(AMR) 자료를 활용하여 최대피크기여도를 분석하여 부하분석을 수행하였다.

  • PDF

Research on the Performance of Protocols and the Evaluation Metric for VIDEO Transmissions in an Ad Hoc Network

  • Chen, Ruey-Shin;Chao, Louis R.;Chen, Ching-Piao;Tsai, Chih-Hung
    • International Journal of Quality Innovation
    • /
    • v.10 no.1
    • /
    • pp.115-126
    • /
    • 2009
  • Video transmission effectiveness in the Ad Hoc network is becoming important recently, if different routing protocols are applied. Some researchers conclude that the reactive protocols are better for file transfer protocol (FTP) and constant bit rate (CBR) or hypertext transfer protocol (HTTP) transmission in an Ad Hoc wireless network but the performance report of video transmission is not much. This study adopts Qualnet (Network Simulator) as a simulation tool for environmental designing and performance testing, and employs an experimental design with eight groups. Our experiment shows that: (1) The performance of AODV (reactive) protocol is better than DSDV, ZRP and DSR when the transmission load has only one video stream; (2) Proactive (DSDV) and Hybrid protocols (ZRP) are better for a smaller Ad Hoc network when it transmits a video stream with some applications (VoIP, FTP and CBR). We conclude that packet loss rate is sensitive to the quality of video transmission and it has negative relationship with Peak Signal-to-Noise Ratio (PSNR) value. In addition, our experiment also shows that PSNR is a simple Metric for the performance evaluation of video transmission.

Transport and management of diffuse pollutants using low impact development technologies applied to highly urbanized land uses (고도화 도시지역에 적용된 LID 기법의 비점오염물질 관리 및 이동)

  • Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.173-180
    • /
    • 2019
  • This study was conducted to understand factors affecting TSS and heavy metals transport on the road, parking lot and roof. During storm events, heavy metals, which were mostly attached to TSS, were also transported when TSS was washed off in the road, parking lot and roof. This finding may be supported by the significant correlations between TSS load and total and soluble heavy metals load including Cr, Fe, Cu, and Pb (Pearson r value: 0.52 to 0.73; probability p value<0.01). Generation and transport of TSS and heavy metals were greater in the road and parking lot compared to the roof due to vehicular activities, slope and greater catchment areas of these sites. It was found that TSS transport during peak flows of storm events ranges from 65% to 75% implying that by controlling peak flows, TSS transportation to nearby water bodies may be decreased. Depending on the target TSS and heavy metal reduction, sizing of low impact development (LID) technologies and green infrastructures (GI) such as infiltration trench, tree box filter, and rain garden may be calculated. Future researchers were recommended to assess the limitations of the systems and determine the design considerations for these types of facilities.

A Study on the Economic Analysis of the Energy Storage System in Customer (수용가용 전력저장시스템의 경제성분석에 관한 연구)

  • Kim, Jeongho;Jang, Junoh
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.47-54
    • /
    • 2014
  • Recently, BESS is considered as one of essential countermeasure for demand side management. However, an economic evaluation is critical issue for the introduction of power system because the cost of BESS is very high in present stage. Therefor, this paper presents economic evaluation method for customer use case by considering peak shaving function based on the real time price. From the case study on the model power system and educational customer, it is confirmed that the proposed method is a practical tool for the economic analysis of BESS. and analytical approach for the reliability assessment in radially operated distribution systems. The approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP (Non-Delivery Power) and NDE (Non-Delivery Energy). The indexes can only consider the number and configuration of the load, but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new performance indexes for the investment of the distribution facilities considering both the expected interruption cost for the load section and the operation characteristics of Energy Storage System. The results from a case study show that the proposed methods can be a practical tool for the reliability management in distribution systems including Energy Storage System.

Analysis of Unit Pollution Load on Highway runoff (고속도로 노면 강우유출 오염부하 원단위 산정)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.55-68
    • /
    • 2012
  • Impervious surface increase due to urbanization, one of the leading causes of pavement increased the runoff coefficient, peak flow, and reducing the infiltration flow and thereby causing flooding and river erosion is occurring in aquatic ecosystems are known to impair. This study aimed to classify use type of detailed land into the road, reststop, tollgates and etc. focused on major domestic highways, to understand the characteristics of rainfall runoff pollutants and to calculate applicable unit pollution load. Because of high runoff coefficient and short travel time to drainage. first flush occurred clearly. Average EMCs of runoff in the highway was investigated as TSS 108.47 mg / L, COD 28.16 mg / L, BOD 13.61 mg / L, TN 6.38 mg / L, TP 0.03 mg / L, Cu 118.17 ${\mu}g$ / L, Pb 345.3 ${\mu}g$ / L, Zn 349.47 ${\mu}g$ / L. Unit pollution loads calculated by detailed land use area of highways based on average annual rainfall, EMCs, applicable basin areas and etc. were 46.6 kg/km2/day of BOD, 1.4 kg/km2/day of TP, 8.81 kg / km2/day of TN and these were BOD 50.8%, TP 66.7%, TN 64.4%in comparison of the unit pollution loads which applies fallow land standards of the TMDL(Total Maximum Daily Load). It was considered that discharged loads can be excessively calculated in case highway non-point management plans based on unit pollution load of the current land standard.

Optimal Operation Control for Energy Saving in Water Reuse Pumping System (에너지절감을 위한 물 재이용 펌프시스템의 최적운전 제어)

  • Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2414-2419
    • /
    • 2012
  • This paper presents an optimal operation control method for energy saving in the water reuse pumping system. A predictive horizon switching strategy is proposed to implement an optimal operation control and a linear programming (LP) algorithm is used to solve optimal problems in each time step. Energy costs are calculated for electricity on both TOU in the light, heavy, and maximum load time period and peak charges. The optimal operation in water reuse pumping systems is determined to reduce the TOU and peak costs. The simulation results show a power energy saving for water reuse pumping systems and power stability improvement.

Analysis of the Impact of Smart Grids on Managing EVs' Electrical Loads (스마트그리드를 통한 전기자동차의 전력망 영향 관리 효과)

  • Park, Chan-Kook;Choi, Do-Young;Kim, Hyun-Jae
    • Journal of Digital Convergence
    • /
    • v.11 no.11
    • /
    • pp.767-774
    • /
    • 2013
  • The electricity demand and supply could be off balance if several electric vehicles(EVs) were charged at the same time or at peak load times. Therefore, smart grids are necessary to flatten the EVs' electricity demand and to enable EVs to be used as distributed storage devices as electricity demand from EV-charging increases. There are still few quantitative studies on the impact of smart grids on managing EVs' electrical loads. In this study, we analyzed the quantitative impact of smart grids on managing EVs' electrical loads and suggested policy implications. As a result, it is identified that smart grids can manage effectively EVs' impact on electrical grids. The electricity market structure and regulatory framework should support the demonstration and commercialization of smart grid technologies.

Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning (머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법)

  • Yang, Seung Kwon;Song, Taek Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.157-163
    • /
    • 2019
  • K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.

Evaluation of Runoff‧Peak Rate Runoff and Sediment Yield under Various Rainfall Intensities and Patterns Using WEPP Watershed Model (다양한 강우강도 및 패턴에 따른 WEPP 모형의 유출‧첨두유출‧토양유실량 평가)

  • Choi, Jae-Wan;Ryu, Ji-Chul;Kim, Ik-Jae;Lim, Kyoung-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.8
    • /
    • pp.795-804
    • /
    • 2012
  • Recently, changes in rainfall intensity and patterns have been causing increasing soil loss worldwide. As a result, the water ecosystem becomes worse and crops yield are reduced with soil loss and nutrient loss with it. Many studies have been proposed to estimate runoff and soil loss to predict or decrease non-point source pollution. Although the USLE has been used for many years in estimating soil losses, the USLE cannot reflect effects on soil loss of changes in rainfall intensity and patterns. The WEPP, physically based model, is capable of predicting soil loss and runoff using various rainfall intensity. In this study, the WEPP model was simulated for sediment yield, runoff and peak runoff using data of 5, 10, 30, 60 minute term rainfall, Huff's method and design rainfall. In case of rainfall interval of 5 minutes and 60 minutes, the sediment and runoff values decreased by 24% and 19%, respectively. The peak rate runoff values decreased by 16% when rainfall interval changed from 5 minutes to 60 minutes, indicating the peak rate runoff values are affected by rainfall intensity to some degrees. As a result of simulating using Huff's method, all values (sediment yield, runoff, peak runoff) were found to be the greatest at third quartile. According to the analysis under various design rainfall conditions (2, 3, 5, 10, 20, 30, 50, 100, 200, 300 years frequency), sediment yield, runoff, and peak runoff of 906.2%, 249.4% and 183.9% were estimated using 2 year to 300 year frequency rainfall data.