• Title/Summary/Keyword: Peak Height

Search Result 668, Processing Time 0.028 seconds

A Study of the Thermoluminescent Properties of Korean Natural Quartz for Possible Use in Gamma-ray Dosimetry

  • Lee, Hee-Yong;Kim, Hi-Gyu;Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.229-239
    • /
    • 1970
  • Various thermoluminescent properties of Korean natural quartz for possible use in ${\gamma}$-ray dosimetry has been studied. If the heating is exactly linear, ${\gamma}$-irradiated radiation sensitive (type 1) $\alpha$-quartz can yield a glow curve of single peak, hence glow peak height could be taken as a ${\gamma}$-dose for its dosimetry. Quartz crystal dosimeter exhibited the linearity of thermoluminescent intensity in the range from about 2$\times$10$^{3}$R to 2$\times$10$^{6}$ R, and also had an advantage of low fading because of the high peak temperature (300$\pm$4$0^{\circ}C$). The pulverized quartz sample having the grain size of 0.3<ø<0.9mm showed the linearity of T. L. intensity in the range from 50R to 2$\times$10$^3$R. Therapeutic application of the pulverized sample on the correct measurement of the absorbed dose in a body region of a cancer patient seems to be successful.

  • PDF

Gust durations, gust factors and gust response factors in wind codes and standards

  • Holmes, John D.;Allsop, Andrew C.;Ginger, John D.
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.339-352
    • /
    • 2014
  • This paper discusses the appropriate duration for basic gust wind speeds in wind loading codes and standards, and in wind engineering generally. Although various proposed definitions are discussed, the 'moving average' gust duration has been widely accepted internationally. The commonly-specified gust duration of 3-seconds, however, is shown to have a significant effect on the high-frequency end of the spectrum of turbulence, and may not be ideally suited for wind engineering purposes. The effective gust durations measured by commonly-used anemometer types are discussed; these are typically considerably shorter than the 'standard' duration of 3 seconds. Using stationary random process theory, the paper gives expected peak factors, $g_u$, as a function of the non-dimensional parameter ($T/{\tau}$), where T is the sample, or reference, time, and ${\tau}$ is the gust duration, and a non-dimensional mean wind speed, $\bar{U}.T/L_u$, where $\bar{U}$ is a mean wind speed, and $L_u$ is the integral length scale of turbulence. The commonly-used Durst relationship, relating gusts of various durations, is shown to correspond to a particular value of turbulence intensity $I_u$, of 16.5%, and is therefore applicable to particular terrain and height situations, and hence should not be applied universally. The effective frontal areas associated with peak gusts of various durations are discussed; this indicates that a gust of 3 seconds has an equivalent frontal area equal to that of a tall building. Finally a generalized gust response factor format, accounting for fluctuating and resonant along-wind loading of structures, applicable to any code is presented.

A study on the identification of type IIa natural diamonds treated by the HPHT method (HPHT(고온고압)에 의해 처리된 type IIa 천연 다이아몬드의 감별에 관한 연구)

  • 김영출;최현민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Results from PL and Raman spectroscopic analyses of HPHT (high-pressure high-temperature) treated type IIa diamonds are presented, and these spectral characteristics are compared with those of untreated diamonds of similar color and type. We identify a number of significant changes by 325 nm He/Cd laser excitation. Several peaks are removed completely, including H4, H3 system in HPHT treated diamond. The N3 system, however, increased in emission. Also we can find the behaviour of the nitrogen-vacancy related center N-V centers at 575 and 637.1 nm, as observed with 514 nm Ar ion laser excitation. When these centers are present, the FWHM (full width at half maximum) of 637.1 nm luminescence intensities offers a potential means of separating HPHT-treated from untreated type IIa diamonds. The width of 637.1 nm $(N-V)^-$line measured at the position oi half the peak's height are determine to range from 19.8 to $32.1cm^{-1}$ for HPHT treated diamonds.

An Experimental Study on the Characteristics of Moxa Combustion (II) - On the Density of Moxa Material - (애구(艾灸)의 연소(燃燒) 특성(特性)에 관한 실험적(實驗的) 연구(硏究)(II) - 애주(艾炷)의 밀도(密度)를 중심(中心)으로 -)

  • Park, Young-Bae;Kang, Sung-Keel;Huh, Wung
    • Journal of The Association for Neo Medicine
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1996
  • It is thought that the quantity and quality of the heat stimulation and the mechanism of heating process are important to understand the moxa-combustion. In order to get the basic data on the effective moxa-combustion method, combustion temperature changes (average temperature, peak temperature, average gradient temperature and maximum gradient temperature) of the heating period were measured respectively by the density of moxa material. For the experiment, samples of $300mg/0.26cm^3$ , $400mg/0.26cm^3$ and $500mg/0.26cm^3$ of moxa material were molded in a conical mold with each 10mm in diameter and height. 1. The average temperature and peak temperature of heating period on the moxa-combustion showed higher in the $400mg/0.26cm^3$ and $300mg/0.26cm^3$ than in the $500mg/0.26cm^3$ sample respectively. 2. The average gradient temperature of heating period on the moxa-combustion rose quickly in the $300mg/0.26cm^3$, $400mg/0.26cm^3$ and $500mg/0.26cm^3$ in that order and the maximum gradient temperature rose more quickly in the $300mg/0.26cm^3$ and $400mg/0.26cm^3$ than in the $500mg/0.26cm^3$ sample respectively. According to the above results, it is concluded that the density of moxa material is (the) more important (factor) than the weight or volume of moxa material on the combustion temperature changes of the heating period for the evaluation of the quality and quantity of moxa-combustion.

  • PDF

The Effect of Badminton Shoe Forefoot Flexibility during the Under Clear Quick Lunge from a Jump Smashing (배드민턴화의 굴곡성(Flexibility) 차이가 점프 스매싱 후 언더클리어 동작시 하지에 미치는 영향)

  • Yi, Jae-Hoon;Sohn, Jee-Hoon;Ryue, Jae-Jin;Lee, Ki-Kwang;Lee, Jung-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • The purpose of this study was to investigate the effect that difference in forefoot of shoe flexibility during the quick lunge from a jump smashing on the lower limbs and the plantar pressure distribution. For this 10 elite badminton players with over 10 years experience and right handed participated. Two kinds of badminton shoes were selected and tested mechanical testing for the forefoot flexibility. Motion analysis, ground reaction forces and plantar pressure distribution were recorded. It was required to conduct lunge movement after jumping smashing as possible as high. Photo sensor was located in 3 meter away from standing position and its height was 40 cm. Subjects were conducted to return original position after touching the sensor as under clear movement as possible as fast. Forefoot stiffness had an effect on shoe peak bending degree and peak bending angular velocity in propulsion phase. Forefoot flexibility had an effect on ankle plantar flexion and knee flexion moment. It appears that joint power on lower limb and peak plantar pressure were not influenced by the flexibility of shoes.

The Effect of Plantar Foot Pressure Negotitating Obstacles in the Elderly

  • Seo, Kyo-Chul;Kim, Hyeun-Ae;Kim, Hee-Tak;Kim, Sung-Gyung;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.15-22
    • /
    • 2011
  • Purpose: This research investigated falls due to obstacles that occur among elderly people by assessing changes in the values of plantar foot force, peak force, and plantar foot pressure in elderly subjects while they were stepping over obstacles of different heights. Methods: The subjects were 20 elderly people aged 70-80 years; Pressure was measured on flat ground(0 cm), and after installing obstacles of 8 cm and 12 cm using the F-scan system, which is a resistance-type pressure sensor. A one-way analysis of variance was performed to compare pressure on each part of the foot according to various heights after collecting data using the Tekscan program. The least significant difference test was used for the post-hoc analysis, A p-value <0.05 was considered significant. Results: The force value for the toe area (parts 1, and 2) and contact pressure increased significantly with the 12 cm obstacle (p<0.05). The peak force value and the peak contact pressure for part 1 increased significantly with the 12 cm obstacle (p<0.05). Conclusion: Larger changes appeared in the functions and structure of the foot while subjects walked over obstacles of different heights compared to flatland walking. This result suggests that people have safety strategies to prevent falls, and that there is a need for a more realistic approach through practice to overcome obstacles of various heights to prevent falls.

Comparison of Three Normalization Methods for 3D Joint Moment in the Asymmetric Rotational Human Movements in Golf Swing Analysis

  • Lee, Dongjune;Oh, Seung Eel;Lee, In-Kwang;Sim, Taeyong;Joo, Su-bin;Park, Hyun-Joon;Mun, Joung Hwan
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.289-295
    • /
    • 2015
  • Purpose: From the perspective of biomechanics, joint moments quantitatively show a subject's ability to perform actions. In this study, the effect of normalization in the fast and asymmetric motions of a golf swing was investigated by applying three different normalization methods to the raw joint moment. Methods: The study included 13 subjects with no previous history of musculoskeletal diseases. Golf swing analyses were performed with six infrared cameras and two force plates. The majority of the raw peak joint moments showed a significant correlation at p < 0.05. Additionally, the resulting effects after applying body weight (BW), body weight multiplied by height (BWH), and body weight multiplied by leg length (BWL) normalization methods were analyzed through correlation and regression analysis. Results: The BW, BWH, and BWL normalization methods normalized 8, 10, and 11 peak joint moments out of 18, respectively. The best method for normalizing the golf swing was found to be the BWL method, which showed significant statistical differences. Several raw peak joint moments showed no significant correlation with measured anthropometrics, which was considered to be related to the muscle coordination that occurs in the swing of skilled professional golfers. Conclusions: The results of this study show that the BWL normalization method can effectively remove differences due to physical characteristics in the golf swing analysis.

Test and simulation of circular steel tube confined concrete (STCC) columns made of plain UHPC

  • Le, Phong T.;Le, An H.;Binglin, Lai
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.643-657
    • /
    • 2020
  • This study presents experimental and numerical investigations on circular steel tube confined ultra high performance concrete (UHPC) columns under axial compression. The plain UHPC without fibers was designed to achieve a compressive strength ranged between 150 MPa and 200 MPa. Test results revealed that loading on only the UHPC core can generate a significant confinement effect for the UHPC core, thus leading to an increase in both strength and ductility of columns, and restricting the inherent brittleness of unconfined UHPC. All tested columns failed by shear plane failure of the UHPC core, this causes a softening stage in the axial load versus axial strain curves. In addition, an increase in the steel tube thickness or the confinement index was found to increase the strength and ductility enhancement and to reduce the magnitude of the loss of load capacity. Besides, steel tube with higher yield strength can improve the post-peak behavior. Based on the test results, the load contribution of the steel tube and the concrete core to the total load was examined. It was found that no significant confinement effect can be developed before the peak load, while the ductility of post-peak stage is mainly affected by the degree of the confinement effect. A finite element model (FEM) was also constructed in ABAQUS software to validate the test results. The effect of bond strength between the steel tube and the UHPC core was also investigated through the change of friction coefficient in FEM. Furthermore, the mechanism of circular steel tube confined UHPC columns was examined using the established FEM. Based on the results of FEM, the confining pressures along the height of each modeled column were shown. Furthermore, the interaction between the steel tube and the UHPC core was displayed through the slip length and shear stresses between two surfaces of two materials.

Vertical Ground Reaction Force Asymmetry in Prolonged Running

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.1
    • /
    • pp.29-35
    • /
    • 2018
  • Objective: The purpose of this study was to determine the asymmetry of vertical ground reaction force (GRF) components between dominant and non-dominant legs in rested and fatigued states in prolonged running. Method: Twenty healthy men, heel strikers, were included (age: $24.00{\pm}5.0years$; height: $176.1{\pm}6.0cm$; body mass: $69.0{\pm}6.0kg$) in this study. Subjects ran on an instrumented treadmill for 130 minutes. During treadmill running, GRF data (1,000 Hz) were collected for 20 strides at five minutes (rested) and 125 minutes (fatigued) running while they were unaware of collecting data. Asymmetry indexes (ASI) were calculated to quantify the asymmetry magnitude in rested and fatigued states. Paired t-test was used to verify the differences between dominant and non-dominant legs in rested and fatigued states. In addition, one-way repeated measure analysis of variance was applied for comparison of ASI of both states. The level of significance was set at p < .05. Results: Passive force peak magnitude, loading rate, and impulse affecting the development of running injury were found significantly greater in dominant leg than in non-dominant leg at rested state (p < .05). However, passive force peak time and active force peak magnitude were found significantly different between legs in fatigued state (p < .05). To determine changes in percentage of asymmetry between legs in both states, ASI was used. ASI for all variables increased in fatigued state; however, no significant differences were found between both states. Conclusion: This study found that fatigue did not affect differences in vertical GRF between dominant and non-dominant legs and asymmetry changes.

The Effect of Modified Swing Method on the Muscle Activation Patterns of Upper Limb in Wheelchair Badminton Players

  • You Joo SHIN;Duk Chan JANG;Sangbum PARK
    • Journal of Sport and Applied Science
    • /
    • v.7 no.2
    • /
    • pp.1-12
    • /
    • 2023
  • Purpose: The purpose of this study was to investigate the possibility of modified swing to prevent shoulder injury by analyzing differences in the muscle activation patterns of upper limb by the swing method in wheelchair badminton players. Research design, data, and methodology: 10 wheelchair badminton players participated in the experiment as subjects and performed 10 high clears and 10 smashes in both traditional and modified swing methods toward a shuttlecock hung at the height of racket impact point. For each trial, activation patterns of biceps brachii, triceps brachii, anterior deltoid, and posterior deltoid were measured from the upper limb participating in the swing from which the duration, peak, and root mean square (RMS) of electromyography (EMG) activities from swing initiation to shuttle impact were calculated. The maximum swing velocity of the smash and the distance of the high clear were also measured with both methods to compare differences in the swing velocity and shuttle hit distance. Results: Differences in the EMG peak and RMS of the anterior deltoid by swing methods were shown to differ by the skill type, being higher in the traditional swing method than the modified during only the high clear. The EMG peak and RMS, and the duration of the posterior deltoid were higher and longer with the traditional swing method than the modified during both the smash and high clear. The intensities of the biceps brachii and triceps brachii activities measured during the smash and high clear were higher in the traditional swing method than the modified, and the biceps brachii and triceps activity durations during the high clear were shorter in the modified swing method than the traditional. The maximum swing velocity of the smash was faster with the traditional swing method than the modified, while the distance of the high clear did not differ significantly. Conclusions: These results suggest that the modified swing can be an effective performance method for preventing shoulder injuries without undue loss of impact power in wheelchair badminton players by reducing excessive loads imposed on the shoulder and allowing the optimal use of the elbow extension.