• Title/Summary/Keyword: Peak Expiratory Flow Rate(PEFR)

Search Result 24, Processing Time 0.025 seconds

Pulmonary Function Test and Body Composition Analysis in Obese Children (비만 소아에서 폐기능 검사와 체성분 분석에 대한 연구)

  • Shin, Jee Seon;Park, Ji Hye;Kim, Ji Young;Kim, Su Jung;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.588-593
    • /
    • 2005
  • Purpose : Obesity is associated with disturbances of ventilatory functions in adults. But few studies have evaluated the pulmonary complications of obesity in the pediatric population. The purpose of this study is to clarify the effects of obesity on pulmonary function and body composition in obese children. Methods : Forty seven obese children whose ages ranged from nine to twelve years were evaluated for their body composition(intracellular fluid, extracellular fluid, protein mass, mineral mass, soft lean mass, fat mass, percent body fat, fat distribution) by bioelectrical impedance analysis. Hemoglobin, serum glucose, aspartate aminotransferase(AST), alanine aminotransferase(ALT), total cholesterol and triglycerides were measured. Pulmonary function test was performed by spirometer. Results : Intracellular fluid, protein mass, fat mass, percent body fat and fat distribution were significantly higher in severely obese children with an obesity index of more than 150 percent compared with those with an index of less than 150 percent. Peak expiratory flow rate(PEFR) was significantly lower in severely obese children with obesity index of more than 150 percent compared with those with less than 150 percent($241.7{\pm}14.6L/sec$ vs $276.8{\pm}64.3L/sec$). PEFR, forced expiratory flow 25 percent($FEF_{25}$), mid expiratory flow rate(MEFR), forced expiratory flow 50 percent($FEF_{50}$), forced expiratory volume in 1st second($FEV_1$) and forced vital capacity(FVC) were decreased in 37.0 percent, 14.8 percent, 14.8 percent, 11.1 percent, 3.7 percent and 3.7 percent of obese children, respectively. Conclusion : PEFR was significantly decreased in obese children. Pulmonary function test must be performed in severely obese children and more extended study is needed in other age groups.

Occupational Tasks Influencing Lung Function and Respiratory Symptoms Among Charcoal-Production Workers: A Time-Series Study

  • Pramchoo, Walaiporn;Geater, Alan F.;Jamulitrat, Silom;Geater, Sarayut L.;Tangtrakulwanich, Boonsin
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • Background: Tasks involved in traditional charcoal production expose workers to various levels of charcoal dust and wood smoke. This study aimed to identify specific tasks influencing lung function and respiratory symptoms. Methods: Interviews, direct observation, and task/symptom checklists were used to collect data from 50 charcoal-production workers on 3 nonwork days followed by 11 workdays. The peak expiratory flow rate (PEFR) was measured four times per day. Results: The PEFR was reduced and the prevalence of respiratory symptoms increased over the first 6-7 workdays. The PEFR increased until evening on nonwork days but not on workdays. Loading the kiln and collecting charcoal from within the kiln markedly reduced the PEFR and increased the odds of respiratory symptoms. Conclusion: Tasks involving entry into the kiln were strongly associated with a short-term drop in the PEFR and the occurrence of respiratory symptoms, suggesting a need for the use of protective equipment and/or the operation of an effective kiln ventilation system.

Annual Change of Peak Expiratory Flow Rate in Asthma and COPD (천식환자 및 만성 폐쇄성 폐질환환자군에서 연간 최대 호기유속의 변화량)

  • Hong, Sung-Chul;Lee, Cho-I;Han, Jang-Soo;Kim, Won-Dong;Lee, Kye-Young;Kim, Sun-Jong;Kim, Hee-Joung;Ha, Kyoung-Won;Chon, Gyu-Rak;Yoo, Kwang-Ha
    • Tuberculosis and Respiratory Diseases
    • /
    • v.72 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • Background: Measurement of peak expiratory flow rate (PEFR) in a follow-up examination for a chronic airway disease is useful because it has the advantages of being a simple measurement and can be repeated during examination. The aim of this study was to examine the annual decrease of PEFR in asthma and chronic obstructive pulmonary disease (COPD) patients and to confirm the factors which influence this decrease. Methods: From May, 2003 to September, 2010, the annual decrease of PEFR was obtained from asthma and COPD patients attending an outpatient pulmonary clinic. PEFR was measured using a Mini-Wright peak flow meter (Clement Clarke International Ltd. UK), and we conducted an analysis of factors that influence the change of PEFR and its average values. Results: The results showed an annual decrease of $1.70{\pm}12.86$ L/min the asthmatic patients and an annual decrease of $10.3{\pm}7.32$ L/min in the COPD patients. Age and $FEV_1$ were the predictive factors influencing change in asthma, and $FEV_1$ and smoking were the predictive factors influencing change in COPD. Conclusion: We confirmed the annual decreasing PEFR in patients with chronic airway disease and identified factors that work in conjunction with $FEV_1$ to influence the change.

A Study on the Acute Effects of Eine Particles on Pulmonary Function of Schoolchildren in Beijing, China (봄철 미세분진이 북경시 아동 폐기능에 미치는 급성영향에 관한 연구)

  • 김대선;유승도;차정훈;안승철;차준석
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.2
    • /
    • pp.140-148
    • /
    • 2004
  • To evaluate the acute effects of fine particles on pulmonary function, a longitudinal study was conducted. This study was carried out for the schoolchildren (3rd and 6th grades) living in Beijing, China. Each child was provided with a mini-Wright peak flow meter and a preformatted health symptom diary for 40 days, and was trained on their proper use. Participants were instructed to perform the peak flow test three times in standing position, three times a day (9 am, 12 pm, and 8 pm), and to record all the readings along with the symptoms (cold, cough, and asthmatic symptoms) experienced on that day. Daily measurement of fine particles (PM$_{10}$ and PM$_{2.5}$) was obtained in the comer of the playground of the participating elementary school for the same period of this longitudinal study. The relationship between daily peak expiratory flow rate (PEFR) and fine particle levels was analyzed using a mixed linear regression models including gender, height, the presence of respiratory symptoms, and daily average temperature and relative humidity as extraneous variables. The total number of students participating in this longitudinal study was 87. The range of daily measured PEFR was 253-501$\ell$/min. In general, the PEFR measured in the morning was lower than the PEFR measured in the evening (or afternoon) on the same day. The daily mean concentrations of PM$_{10}$ and PM$_{2.5}$ over the study period were 180.2$\mu\textrm{g}$/㎥ and 103.2$\mu\textrm{g}$/㎥, respectively. The IQR (inter-quartile range) of PM$_{10}$ and PM$_{2.5}$ were 91.8$\mu\textrm{g}$/㎥ and 58.0$\mu\textrm{g}$/㎥. During the study period, the national ambient air quality standard of 150$\mu\textrm{g}$/㎥ (for PM$_{10}$) was exceeded in 23 days (57.5%). The analysis showed that an increase of 1$\mu\textrm{g}$/㎥ of PM$_{10}$ corresponded to 0.59$\mu\textrm{g}$/㎥ increment of PM$_{2.5}$. Daily mean PEFR was regressed with the 24-hour average PM$_{10}$ (or PM$_{2.5}$) levels, weather information such as air temperature and relative humidity, and individual characteristics including gender, height, and respiratory symptoms. The analysis showed that the increase of fine particle concentrations was negatively associated with the variability in PEFR. The IQR increments of PM$_{10}$ or PM$_{2.5}$ (at 1-day time lag) were also shown to be related with 1.54 $\ell$/min (95% Confidence intervals: 0.94-2.14) and 1.56$\ell$/min (95% CI: 0.95-2.16) decline in PEFR.R.ine in PEFR.ine in PEFR.

An Evaluation of the Accuracy of Mini-Wright Peak Flow Meter (mini-Wright Peak Flow Meter에 의한 PEFR 측정의 정확도)

  • Koh, Young-Il;Choi, In-Seon;Na, Hyun-Ju;Park, Seok-Chae;Jang, An-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.2
    • /
    • pp.298-308
    • /
    • 1997
  • Background : Portable devices for measuring peak expiratory flow(PEF) are now of proved value in the diagnosis and management of asthma and many lightweight PEF meters have become available. However, it is necessary to determine whether peak expiratory flow rate(PEFR) measurements measured with peak flowmeters is accurate and reproducible for clinical application. The aim of the present study is to define accuracy, agreement, and precision of mini-Wright peak flow meter(MPFM) against standard pneumotachygraph. Methods : The lung function tests by standard pneumotachygraph and PEFR measurement by MPFM were performed in a random order for 2 hours in 22 normal and 17 asthmatic subjects and also were performed for 3 successive days in 22 normals. Results : The PEFR measured with MPFM was significantly related to the PEFR and $FEV_1$ measured with standard pneumotachygraph in normal and asthmatics(for PEFR, r = 0.92 ; p < 0.001 ; for $FEV_1$, r = 0.78 ; p < 0.001). The accuracy of MPFM was within 100(limits of accuracy recommeded by NAEP) in all the subjects or 22 normal, mean difference from standard pneumotachygraph being 16.5L/min(percentage of difference being 2.90%) or 10.6L/min(percentage of difference being 1.75%), respectively. According to the method proposed by Bland and Altman, the 95% limits of the distribution of differences between MPFM and standard pneumotachygraph after correction of PEFR using our regression equation were +38.2 and -71.5L/min in all the subjects or 20.49~+9.49L/min in 22 normal and was similar to the intraindividual agreements for 3 successive days in normal. There was no statistically significant difference of PEFR measured with MPFM and standard pneumotachygraph among three days(p > 0.05) and the coefficient of variation($2.4{\pm}1.2%$) of PEFR measured with MPFM was significantly lower than that($5.2{\pm}3.5%$) with standard pneumotachygraph in normal (p < 0.05). Conclusion : This results suggest that the MPFM was as accurate and reproducible as standard pneumotachygraph for monitoring of PEFR in the asthmatic subjects.

  • PDF

A Study on the Acute Effects of Fine Particles on Pulmonary Function of Schoolchildren in Inner-Mongolia, China

  • Kim, Dae-Seon;Yu, Seung-Do;Ahn, Seung-Chul;Na, Jin-Gyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.311-314
    • /
    • 2005
  • To evaluate the acute effects of fine particles on pulmonary function, a longitudinal study was conducted. This study was carried out for the schoolchildren(3rd and 4th grades) living in Inner-Mongolia, China. 113 Chinese children were asked to record their daily levels of peak expiratory flow rate(PEPR) using portable peak flow meter(mini-Wright) for 40 days and 3 time everyday(12 April 2004 to 21 May 2004). The atmospheric concentration of fine particles in study area was also determined everyday during same period. The relationship between dailypeak expiratory flow rate(PEFR) and fine particle levels was analyzed using a mixed linear regression models including gender, age, height, the presence of respiratory symptoms, and daily average relative humidity as extraneous variables. The analysis showed that the increase of fine particle concentrations was negatively associated with the variability in PEPR. The IQR(inter-quartile range) increments of $PM_{10}$ or $PM_{2.5}(66.0{\mu}g/m^3$ and $118.9{\mu}g/m^3$, respectively) were also shown to be related with 1.422L/min(95% Confidence intervals: 0.270 ${\sim}$ 2.574) and 1.214L1min(95% Cl: 0.010 ${\sim}$ 2.418) decline in PEFR.

  • PDF

Effects of Fine Particles on Pulmonary Function of Elementary School Children in Ulsan (미세먼지가 울산지역 초등학생의 폐기능에 미치는 영향)

  • Yu, Seung-Do;Cha, Jung-Hoon;Kim, Dae-Seon;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.365-371
    • /
    • 2007
  • To evaluate the effect of air pollution on respiratory health in children, We conducted a longitudinal study in which children were asked to record their daily levels of Peak Expiratory Flow Rate(PEFR) using potable peak flow meter(mini-Wright) for 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in year, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $64.9{\mu}g/m^3$ and $46.1{\mu}g/m^3$, respectively. The range of daily measured PEFR in this study was $182{\sim}481\;l/min$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}(or\;PM_{2.5})$ levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of $PM_{10}$ or $PM_{2.5}$ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min(95% CI -1.8, 0.1) decline in PEFR. Even though this study showed negative findings on the relationship between respiratory function and air particles, it was worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely resulted in misclassification of true exposure levels and this was the first Korean study that $PM_{2.5}$ measurement was applied as an index of air quality.

A Study on Acute Effects of Fine Particles on Pulmonary Function of Schoolchildren in Beijing, China

  • Kim, Dae-Seon;Yu, Seung-Do;Cha, Jung-Hoon;Ahn, Seung-Chul
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.193-196
    • /
    • 2004
  • To evaluate the acute effects of fine particles on pulmonary function, a longitudinal study was conducted. This study was carried out for the schoolchildren (3rd and 6th grades) living in Beijing, China. Children were asked to record their daily levels of peak expiratory flow rate using portable peak flow meter (mini-Wright) for 40 days. The relationship between daily PEFR and fine particle levels was analyzed using a mixed linear regression models including gender, height, the presence of respiratory symptoms, and daily average temperature and relative humidity as extraneous variables. The total number of students participating in this longitudinal study was 87. Daily measured PEFR was in the range of $253{\sim}501L/min$. On the daily basis, a PEFR measured in the morning was shown to be lower than that measured in the evening (or afternoon). The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $180.2\;{\mu}g/m^3$ and $103.2\;{\mu}g/m^3$, respectively. The IQR (inter-quartile range) of $PM_{10}$ and $PM_{2.5}$ were $91.8\;{\mu}g/m^3$ and $58.0\;{\mu}g/m^3$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}$ (or $PM_{2.5}$) levels, weather information such as air temperature and relative humidity, and individual characteristics including gender, height, and respiratory symptoms. The analysis showed that the increase of fine particle concentrations was negatively associated with the variability in PEFR. The IQR increments of $PM_{10}$ or $PM_{2.5}$ (at 1-day time lag) were also shown to be related with 1.54L/min (95% Confidence intervals -2.14, -0.94) and 1.56L/min (95% CI -2.16, -0.95) decline in PEFR.

  • PDF

A Study on Acute Effects of Ambient Air Particles on Pulmonary Function of Schoolchildren in Ulsan

  • Yu, Seung-Do;Kim, Dae-Seon;Cha, Jung-Hoon;Ahn, Seung-Chul;Lee, Jong-Tae
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.183-186
    • /
    • 2003
  • To evaluate the effect of air pollution on respiratory health in children, we conducted a longitudinal study in which children were asked to record their daily levels of peak expiratory flow rate using potable peak flow meter (mini-Wright) far 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in you, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of PM$\_$10/ and PM$\_$2.5/ over the study period were 64.9$\mu\textrm{g}$/㎥ and 46. l$\mu\textrm{g}$/㎥, respectively. The range of daily measured PEFR in this study was 170-481 l/min. Daily mean PEFR was regressed with the 24-hour. average PM$\_$10/ (or PM$\_$2.5/) levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of PM$\_$10/ or PM$\_$2.5/ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min (95% Cl -1.8, 0.1) decline in PEFR. Even though this study shows negative findings on the relationship between respiratory function and air particles, it is worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely results in misclassification of true exposure levels and this is the first Korean study that PM$\_$2.5/ measurement is applied as an index of air particle quality.

  • PDF

Effects of Ambient Air Pollution on Respiratory Health of Workers at Highway Tollgate (간이 폐기능측정기 (mini-Wright)와 비강세척액 (Nasal Lavage)을 이용한 대기오염물질과 호흡기 건강영향 분석)

  • Lee, Jong-Tae;Chung, Yong;Hyun, Youn-Joo;Cho, Hyea-Ryun
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.21-33
    • /
    • 1999
  • A large number of studies have indicated associations between the impairment of respiratory health and exposure to ambient air pollutants such as ozone (O$_3$) , nitrogen dioxide (NO$_2$) , sulfur dioxide(SO$_2$) , particulate matters (PM$\_$10/). To evaluate this associations, we used the pulmonary function tests (peak expiratory flow rate : PEFR) by mini-wright peak flow meter and counting neutrophils in the nasal lavage (NL) as biomarker. From 15 June to 16 July 1998, for the workers in the highway tollgates, PEFR and NL were measured three times daily and twice per week. and association between the level of air pollutants and PEFR and NL were analyzed using the multiple regression model and the poisson regression model respectively. The results indicated that the effects of all measured air pollutants (SO$_2$, NO$_2$, O$_3$, PM$\_$10/) were not significantly associated with the value of PEFR. On the other side, SO$_2$, NO$_2$, PM$\_$10/ were significantly associated with the number of neutrophils in NL. The increase in SO$_2$, NO$_2$of 10ppb and in PM$\_$10/ of 10$\mu\textrm{g}$/m$^3$was associated with 24%, 21%, 35% increases in neutrophil counts. But the ozone exposure was not associated with NL.

  • PDF