• Title/Summary/Keyword: Peak Acceleration

Search Result 562, Processing Time 0.026 seconds

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.

Shaking Table Tests of A 1/5-Scale 3-Story Nonductile Reinforced Concrete Frame (1/5 축소 비연성 3층 철근콘크리트 골조의 진동대 실험)

  • 이한선;우성우;허윤섭;고동우;강귀용;김상대;정하선;송진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.581-586
    • /
    • 1997
  • The objective of this study is to investigate the behavior of a 1/5-scale 3-story nonductile reinforced concrete frame subjected to earthquake excitation. For this purpose, Taft N21E earthquake accelerogram was simulated by using 3m${\times}$5m shaking table. When the input acceleration is compared to that of output, it can be found that simulation of shaking table is excellent. From the results of test with Taft N21E earthquake accelerogram adjusted to peak ground acceleration(PGA) 0.06g and 0.12g(maximum acceleration in korea seismic code) the model responded in elastic behavior and it is found that the existing building in our country are safe against the levels of PGA 0.06g and 0.12g.

  • PDF

Kinematics of Bimanual Complementary Movement in Stroke Patients (뇌졸중 환자에서 양손 보완운동의 운동형상학)

  • Kim, Taehoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.342-349
    • /
    • 2015
  • The objective of this study was to compare the unimanual and bimanual complementary movements of the affected upper extremity. Thirty participants living in Busan area with post-stroke hemiparesis were involved in this study. They were selected according to twelve criteria. We used the Fitmeter accelerometer to measure Signal Vector Magnitude, peak acceleration and peak deceleration. The movement time and Signal Vector Magnitude of bimanual complementary movement were less than those of unimanual movement(p<0.05). Therefore, we suggest that bimanual complementary movement is more useful, as for the kinematic aspect, than unimanual movement when a person with stroke perform activities of daily living.

Vibration behavior of large span composite steel bar truss-reinforced concrete floor due to human activity

  • Cao, Liang;Li, Jiang;Zheng, Xing;Chen, Y. Frank
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.391-404
    • /
    • 2020
  • Human-induced vibration could present a serious serviceability problem for large-span and/or lightweight floors using the high-strength material. This paper presents the results of heel-drop, jumping, and walking tests on a large-span composite steel rebar truss-reinforced concrete (CSBTRC) floor. The effects of human activities on the floor vibration behavior were investigated considering the parameters of peak acceleration, root-mean-square acceleration, maximum transient vibration value (MTVV), fundamental frequency, and damping ratio. The measured field test data were validated with the finite element and theoretical analysis results. A comprehensive comparison between the test results and current design codes was carried out. Based on the classical plate theory, a rational and simplified formula for determining the fundamental frequency for the CSBTRC floor is derived. Secondly, appropriate coefficients (βrp) correlating the MTVV with peak acceleration are suggested for heel-drop, jumping, and walking excitations. Lastly, the linear oscillator model (LOM) is adopted to establish the governing equations for the human-structure interaction (HSI). The dynamic characteristics of the LOM (sprung mass, equivalent stiffness, and equivalent damping ratio) are determined by comparing the theoretical and experimental acceleration responses. The HSI effect will increase the acceleration response.

Simple Empirical Attenuation Relationship for Potential Nuclear Power Plant Sites (원자력발전소의 단순화 된 실증적 지진감쇄 관계)

  • Tanwa, Kankang;Eric, Yee
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.9
    • /
    • pp.43-49
    • /
    • 2018
  • Seismic hazard assessments are performed on a variety of infrastructure projects. One component of a seismic hazard assessment is the attenuation relationship. Several attenuation relationships have been developed over the decades to predict peak ground acceleration under a variety of site conditions. For example, many attenuation relationships were designed to estimate peak ground acceleration, as well as other intensity measures, under a variety of soil conditions, mostly using the average shear wave velocity for the upper 30 m of earth material as a classification scheme. However, certain types of infrastructure, such as tunnels and nuclear power plants, are typically founded on and in bedrock. Using data from Japan, we developed a simple correlation to estimate peak ground acceleration for rock sites and compare the results from another popular attenuation relationship. Results indicate the popular attenuation relationship to be less than the proposed model for distances less than 200 km.

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF

The topographic effect of ground motion based on Spectral Element Method

  • Liu, Xinrong;Jin, Meihai;Li, Dongliang;Hu, Yuanxin;Song, Jianxue
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.411-429
    • /
    • 2017
  • A Spectral Element Method for 3D seismic wave propagation simulation is derived based on the three-dimensional fluctuating elastic dynamic equation. Considering the 3D real terrain and the attenuation characteristics of the medium, the topographic effect of Wenchuan earthquake is simulated by using the Spectral Element Method (SEM) algorithm and the ASTER DEM model. Results show that the high PGA (peak ground acceleration) region was distributed along the peak and the slope side away from the epicenter in the epicenter area. The overall distribution direction of high PGA and high PGV (peak ground velocity) region is parallel to the direction of the seismogenic fault. In the epicenter of the earthquake, the ground motion is to some extent amplified under the influence of the terrain. The amplification effect of the terrain on PGA is complicated. It does not exactly lead to amplification of PGA at the ridge and the summit or attenuation of PGA in the valley.

Influence of mass and contact surface on pounding response of RC structures

  • Khatiwada, Sushil;Larkin, Tam;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.385-400
    • /
    • 2014
  • Pounding damage to bridges and buildings is observed in most major earthquakes. The damage mainly occurs in reinforced concrete slabs, e.g. building floors and bridge decks. This study presents the results from pounding of reinforced concrete slabs. A parametric investigation was conducted involving the mass of the pendulums, the relative velocities of impact and the geometry of the contact surface. The effect of these parameters on the coefficient of restitution and peak impact acceleration is shown. In contrast to predictions from numerical force models, it was observed that peak acceleration is independent of mass. The coefficient of restitution is affected by the impact velocity, total participating mass and the mass ratio of striker and struck block.

Damage potential of earthquake records for RC building stock

  • Ozmen, Hayri Baytan;Inel, Mehmet
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1315-1330
    • /
    • 2016
  • This study investigates ground motion parameters and their damage potential for building type structures. It focuses on low and mid-rise reinforced concrete buildings that are important portion of the existing building stock under seismic risk in many countries. Correlations of 19 parameters of 466 earthquake records with nonlinear displacement demands of 1056 Single Degree of Freedom (SDOF) systems are investigated. Properties of SDOF systems are established to represent RC building construction practice. The correlation of damage and ground motion characteristics is examined with respect to number of story and site classes. Equations for average nonlinear displacement demands of considered RC buildings are given for some of the ground motion parameters. Velocity related parameters are generally found to have better results than the acceleration, displacement and frequency related ones. Correlation of the parameters may be expected to decrease with increasing intensity of seismic event. Velocity Spectrum Intensity and Peak Ground Velocity have been found to have the highest correlation values for almost all site classes and number of story groups. Common parameter of Peak Ground Acceleration has lower correlation with damage when compared to them and some other parameters like Effective Design Acceleration and Characteristic Intensity.