• Title/Summary/Keyword: PdCo alloy

Search Result 46, Processing Time 0.032 seconds

Thermal Stability Improvement of Ni Germanosilicide using Ni-Pd alloy for Nano-scale CMOS Technology (Nano-scale CMOS에 적용하기 위한 Ni-Germanosilicide에서 Ni-Pd 합금을 이용한 Ni-Germanosilicide의 열안정성 향상)

  • Kim, Yong-Jin;Oh, Soon-Young;Agchbayar, Tuya;Yun, Jang-Gn;Lee, Won-Jae;Ji, Hee-Hwan;Han, Kil-Jin;Cho, Yu-Jung;Kim, Yeong-Cheol;Wang, Jin-Suk;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.31-32
    • /
    • 2005
  • Ge 농도가 30%인 SiGe 위에 Ni-Pd 합금을 이용한 새로운 Ni-Germanosilicide의 방법을 제안하여 열안정성 향상에 대해 연구하였다. 새롭게 제안한 Ni-Pd 합금을 이용하여 3 가지 구조 (Ni-Pd, Ni-Pd/TiN, Ni-Pd/Co/TiN) 중 Cobalt 다층구조를 사용한 구조 (Ni-Pd/Co/TiN)가 면저항이 가장 낮고 안정한 silicide 특성을 갖는 것을 나타냈으며, 고온열처리 $700^{\circ}C$, 30분에서도 낮고 안정한 면저항 특성을 유지시켜 열안정성을 개선하였다.

  • PDF

Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance (Pd/Al2O3, Pd/Ag/Al2O3 분리막의 제조와 수소 투과 성능 평가)

  • Lee, Jeong In;Shin, Min Chang;Zhuang, Xuelong;Hwang, Jae Yeon;Kim, Eok yong;Jeong, Chang-Hun;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.116-125
    • /
    • 2022
  • In this experiment, an α-Al2O3 ceramic hollow fiber was used as a support, and a hydrogen membrane plated with Pd and Pd-Ag was manufactured through electroless plating. The Pd-Ag membrane was annealed at 500℃ for 10 h to form an alloy of Pd and Ag. It was confirmed that it became a Pd-Ag alloy through EDS (Energy Dispersive X-ray Spectroscopy) analysis. Also, the thickness of the Pd, Pd-Ag plating layer was measured to be about 8.98 and 9.29 ㎛ through SEM (Scanning Electron Microscope) analysis respectively. Hydrogen permeation experiment was performed using the H2 gas and mixed gas (H2 and N2) in the range of 350~450℃ and 1-4 bar using the prepared hydrogen membrane. Under the H2 gas condition, the Pd and Pd-Ag membrane has a flux of up to 21.85 and 13.76 mL/cm2·min and also separation factors of 1216 and 361 were obtained in the mixed gas at 450℃ and 4 bar conditions respectively.

Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates

  • Rezaei, Milad;Haghshenas, Davoud F.;Ghorbani, Mohammad;Dolati, Abolghasem
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.202-211
    • /
    • 2018
  • In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing $[Pd(NH_3)_4]^{2+}$ (0.02 M) and $[Fe-Citrate]^{2+}$ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dispersive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates - brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) - Fe content of the electrodeposited alloys increases by increasing the overpotential. Also the cathodic current efficiency is low due to high rate of $H_2$ co-reduction. Regarding the chronoamperometry current-time transients, it has been demonstrated that the nucleation mechanism is instantaneous with a typical three dimensional (3D) diffusion-controlled growth in the case of brass and copper substrates; while for FTO, the growth mode changes to 3D progressive. At a constant overpotential, the calculated number of active nucleation sites for metallic substrates is much higher than that of FTO/glass; however by increasing the overpotential, the number of active nucleation sites increases. The SEM micrographs as well as the XRD patterns reveal the formation of Fe-Pd alloy thin films with nanostructure arrangement and ultra-fine grains.

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

THE EFFECT OF GOLD ELECTRODEPOSITION ON PALLADIUM-SILVER ALLOY TO THE COLOR OF PORCELAIN (팔라디움-은 합금의 금전착이 도재의 색조에 주는 영향에 관한 연구)

  • Yoo Jai-Min;Cho Hye-Won;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.111-119
    • /
    • 1991
  • This study was performed to investigate the effect of gold electrodepositoin on porcelain color of palladium-silver alloy. The specimens were made by firing porcelain on the metal plates cast respectively in Au-Pt alloy, and Pd-Ag alloy. In the case of Pd-Ag alloy specimens, porcelain were fired under three different conditions of the metal plate: 1) without gold coating, 2) firing opaque beforehand on one side, gold coating on the other side, 3) gold coating on both sides of the metal plate. Color change was measured with fiber-optic colorimeter(Model TC-6FX, Tokyo Denshoku Co., Japan). The obtained results were as follows: 1. In the group of firing opaque beforehand on one side and gold coating on the other side, there was no significant differences in their color in comparison to the color of the control group of the Au-Pt alloys. 2. In the group of gold coating on both sides on metal plate, there were no significant differences except their value to the group of firing poaque beforehand on one side and gold coating on the other side.

  • PDF

Irreversibly Adsorbed Tri-metallic PtBiPd/C Electrocatalyst for the Efficient Formic Acid Oxidation Reaction

  • Sui, Lijun;An, Wei;Rhee, Choong Kyun;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2020
  • The PtBi/C and PtBiPd/C electrocatalysts were synthesized via the irreversible adsorption of Pd and Bi ions precursors on commercial Pt/C catalysts. XRD and XPS revealed the formation of an alloy structure among Pt, Bi, and Pd atoms. The current of direct formic acid oxidation (Id) increased ~ 8 and 16 times for the PtBi/C and PtBiPd/C catalysts, respectively, than that of commercial Pt/C because of the electronic, geometric, and third body effects. In addition, the increased ratio between the current of direct formic acid oxidation (Id) and the current of indirect formic acid oxidation (Iind) for the PtBi/C and PtBiPd/C catalysts suggest that the dehydrogenation pathway is dominant with less CO formation on these catalysts.

Thickness Dependence of Amorphous CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy (비정질 강자성체 CoSiB/Pd 다층박막의 두께에 따른 수직자기이방성 변화)

  • Yim, H.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.122-125
    • /
    • 2013
  • Perpendicular magnetic anisotropy (PMA) is the phenomenon of magnetic thin film which is preferentially magnetized in a direction perpendicular to the film's plane. Amorphous multilayer with PMA has been studied as the good candidate to realization of high density STT-MRAM (Spin Transfer Torque-Magnetic Random Access Memory). The current issue of high density STT-MRAM is a decrease in the switching current of the device and an application of amorphous materials which are most suitable devices. The amorphous ferromagnetic material has low saturated magnetization, low coercivity and high thermal stability. In this study, we presented amorphous ferromagnetic multilayer that consists of an amorphous alloy CoSiB and a nonmagnetic material Pd. We investigated the change of PMA of the $[CoSiB\;t_{CoSiB}/Pd\;1.3nm]_5$ multilayer ($t_{CoSiB}$ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 nm, and $t_{Pd}$ = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6 nm) and $[CoSiB\;0.3nm/Pd\;1.3nm]_n$ multilayer (n = 3, 5, 7, 9, 11, 13). This multilayer is measured by VSM (Vibrating Sample Magnetometer) and analyzed magnetic properties like a coercivity ($H_c$) and a magnetization ($M_s$). The coercivity in the $[CoSiB\;t_{CoSiB}\;nm/Pd\;1.3nm]_5$ multi-layers increased with increasing $t_{CoSiB}$ to reach a maximum at $t_{CoSiB}$ = 0.3 nm and then decreased for $t_{CoSiB}$ > 0.3 nm. The lowest saturated magnetization of $0.26emu/cm^3$ was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_3$ multilayer whereas the highest coercivity of 0.26 kOe was obtained in the $[CoSiB\;0.3nm/Pd\;1.3nm]_5$ mutilayer. Additional Pd layers did not contribute to the perpendicular magnetic anisotropy. The single domain structure evolved in to a striped multi-domain structure as the bilayer repetition number n was increased above 7 after which (n > 7) the hysteresis loops had a bow-tie shapes.

A Study on the Shear Bond Strength of the Reinforced Composite Resin to Dental Alloys (강화형 복합레진과 수종의 치과용 합금간의 전단결합강도에 관한 연구)

  • Kim, Jung-Hee;Jo, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2000
  • The reinforced composte resin as the esthetic operative material continuously has been studied because the porcelain fused metal prosthesis is widely used for its excellent esthetics, rigidity and marginal integrity, but it has low fracture resistance against the tensile strength and stress, attrition of the opposite teeth. The reinforced composite resin is well adapt with the dental alloy but it is low the shear bond strength with the dental alloy vs the porcelain fused metal prosthesis, and then has been studied continuously. The purpose of the study was to examine how metal was the higher shear bond strength among the dental alloy was used to the reinforced composite resin and to find the effect that the particle size of sandblasting influenced the shear bond strength. We built up the reinforced composite resin with 4 mm in diameter, 3 mm in height on circular alloy with 5 mm in diameter, 2 mm in height. Type II gold, type IV gold, and Ag-Pd alloy was used as alloys and $50{\mu}m$, $110{\mu}m$, $250{\mu}m$ of the particle size was sandblasted at each alloy in bonding between alloy and resin. We made 90 secimens of 10 per each group and we measured the shear bond strength using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The obtained results were as follows : 1. In comparison among each alloys, Ag-Pd alloy had the highest shear bond strength and the shear bond strength was decreased significantly in the sequence of the type II gold and type IV gold(P<0.001). 2. In comparison according to the size of sandblasting particle, (1) In Ag-Pd alloy, shear bond strength was decreased in the sequence of $110{\mu}m$, $250{\mu}m$, $50{\mu}m$ and there were significant difference in all the group. (P<0.05) (2) In type II gold, it was decreased in the sequence of $250{\mu}m$, $50{\mu}m$, $110{\mu}m$ and there were significant difference. (P<0.05) (3) In type IV gold, it was decreased in the sequence of $110{\mu}m$, $50{\mu}m$, $250{\mu}m$. There were significant difference between the group of $110{\mu}m$ and $50{\mu}m$, the group of $110{\mu}m$ and 250, but there were no significant difference in the group of $50{\mu}m$ and $250{\mu}m$. 3. The highest shear bond strength according to the size of sandblasting particle was $110{\mu}m$ in Ag-Pd alloy and type IV gold, $250{\mu}m$ in type II gold.

  • PDF

Hydrogen separation of $V_{99.8}B_{0.2}$ Alloy Membrane in Water-gas shift Reaction (수성 가스 전이반응에서 $V_{99.8}B_{0.2}$ 합금 분리막의 수소분리)

  • Jeon, Sung-Il;Jung, Yeong-Min;Park, Jung-Hoon;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.22 no.1
    • /
    • pp.16-22
    • /
    • 2012
  • The influence of co-existing gases on the hydrogen permeation without sweep gas was studied through a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane. Membranes have been investigated in the pressure range 1.5-8.0 bar under pure hydrogen, hydrogen-carbon dioxide and hydrogen-carbon monoxide gas mixture without sweep gas at $400^{\circ}C$. Preliminary hydrogen permeation experiments without sweep gas have been confirmed that hydrogen flux was $40.7mL/min/cm^2$ for a Pd-coated $V_{99.8}B_{0.2}$ alloy membrane (thick : 0.5 mm) using pure hydrogen as the feed gas. In addition, hydrogen flux was $21.4mL/min/cm^2$ for $V_{99.8}B_{0.2}$ alloy membrane using $H_2/CO_2$ as the feed gas. The hydrogen permeation flux decreased with decrease of hydrogen partial pressure irrespective of pressure when $H_2/CO_2$and $H_2/CO$mixture applied as feed gas respectively and permeation fluxes were satisfied with Sievert's law in different feed conditions. It was found from XRD, SEM/EDX results after permeation test that the Pd-coated $V_{99.8}B_{0.2}$ alloy membrane had good stability and durability for various mixtures feeding condition.