• Title/Summary/Keyword: Pd colloids

Search Result 3, Processing Time 0.019 seconds

A Study on the Seed Step-coverage Enhancement Process (SSEP) of High Aspect Ratio Through Silicon Via (TSV) Using Pd/Cu/PVP Colloids (Pd/Cu/PVP 콜로이드를 이용한 고종횡비 실리콘 관통전극 내 구리씨앗층의 단차피복도 개선에 관한 연구)

  • Lee, Dongryul;Lee, Yugin;Kim, Hyung-Jong;Lee, Min Hyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.68-74
    • /
    • 2014
  • The seed step-coverage enhancement process (SSEP) using Pd/Cu/PVP colloids was investigated for the filling of through silicon via (TSV) without void. TEM analysis showed that the Pd/Cu nano-particles were well dispersed in aqueous solution with the average diameter of 6.18 nm. This Pd/Cu nano-particles were uniformly deposited on the substrate of Si/$SiO_2$/Ti wafer using electrophoresis with the high frequency Alternating Current (AC). After electroless Cu deposition on the substrate treated with Pd/Cu/PVP colloids, the adhesive property between deposited Cu layer and substrate was evaluated. The Cu deposit obtained by SSEP with Pd/Cu/PVP colloids showed superior adhesion property to that on Pd ion catalyst-treated substrate. Finally, by implementing the SSEP using Pd/Cu/PVP colloids, we achieved 700% improvement of step coverage of Cu seed layer compared to PVD process, resulting in void-free filling in high aspect ratio TSV.

Preparation of Ag, Pd, and Pt50-Ru50 colloids prepared by γ-irradiation and electron beam and electrochemical immobilization on gold surface

  • Kim, Kyung-Hee;Seo, Kang-Deuk;Oh, Seong-Dae;Choi, Seong-Ho;Oh, Sang-Hyub;Woo, Jin-Chun;Gopalan, A.;Lee, Kwang-Pill
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.333-341
    • /
    • 2006
  • PVP-protected Ag, Pd and $Pt_{50}-Ru_{50}$ colloids were prepared independently by using ${\gamma}$-irradiation and electron beam (EB) at ambient temperature. UV-visible spectra of these colloids show the characteristic bands of surface resonance and give evidence for the formation of nanoparticles. Transmission electron microscopy (TEM) experiments were used to know the morphology of nanoparticles prepared by ${\gamma}$-irradiation and EB. The size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by ${\gamma}$-irradiation was ca. 13, 2-3, 15 nm, respectively. While, the size of Ag, Pd, and $Pt_{50}-Ru_{50}$ nanoparticles prepared by EB was ca. 10, 6, and 1-3 nm, respectively. Cyclic voltamograms (CV) were recorded for the Au electrodes immobilized with these nanoparticles. CVs indicated the modifications in the surface as a result of immobilization.

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.