• Title/Summary/Keyword: Pd catalysts

Search Result 187, Processing Time 0.024 seconds

CO2 Reforming of Methane over Co-Pd/Al2O3 Catalysts

  • Itkulova, Sh. S.;Zhunusova, K.Z.;Zakumbaeva, G.D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2017-2020
    • /
    • 2005
  • The supported bimetallic Co-containing catalysts promoted by the different amount of noble metal (Pd) have been studied in the dry reforming of methane. The activity, selectivity, stability and resistance to the carbon deposition of Co-Pd/$Al_2O_3$ catalysts depend on both the catalyst composition and process conditions. It has been observed that the Co-Pd/$Al_2O_3$ catalysts produce the various oxygenates from $CO_2$ + $CH_4$ at moderate pressures.

A Study on the Oxidation of CO and $C_3H_6$ over Noble Metal Supported Catalysts on Monolith (Monolith에 담지한 귀금속촉매상에서 CO와 $C_3H_6$의 동시적 산화반응에 관한 연구)

  • 김태원;고형림;김재형;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.63-72
    • /
    • 1998
  • Simultaneous CO and $C_3H_6$ oxidation was carried out over noble metal supported monolith catalysts in a flow thorugh type reactor at the temperature ranging from room temperature to $500^\circ$C. Pt and Pd were selected as major active species, 10wt% of Ce was impregnated as an additive and alumina and silica were used as supports. The reactant gases were simulated and the reaction products were analyzed by on-line G.C.. EDX, SEM, TGA, XRD and optical microscope were used to analyze the characteristics of the prepared catalysts. Under the given conditions in this study, the catalysts supported on alumina showed better activity for CO oxidation, while Pd catalysts showed better activity for $C_3H_6$ oxidation. The improvement of conversion due to increase in thermal stability possibily by Ce addition was observed only for Pt catalysts.

  • PDF

Catalytic Oxidation of Toluene over Pd-Activated Alumina Catalysts at Low Temperature (활성알루미나에 담지한 팔라듐 촉매상에서 톨루엔의 저온 연소반응)

  • Lee, Ju-Yeol;Song, Hyung-Jin;Lee, Sang-Bong;Kim, Mi-Hyung;Jo, Young-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.339-347
    • /
    • 2012
  • This study focuses on developing catalysts for the removal of toluene produced from paint booth. Toluene is one of the major VOC in painting, coating process. Pd catalysts have been used in hydrogenation oxidation and low temperature combustion reaction for toluene removal. Pd catalysts, even though it is very precious and expensive. Therefore, the prepared catalysts from minimizing the amount of Pd ratio (0.1~1.0wt%) were measured. As a result, 1.0wt% Pd(R) catalyst under all conditions showed the highest activity. These results may suggest that the catalytic activity is related to Pd dispersion according sintering atmosphere and Pd ratio in the manufacturing process through the analysis of SEM, XRD.

A Effect of H2O-H2 Pretreatment on VOCs Oxidation over Noble Catalysts on Titania (티타니아에 담지된 귀금속촉매의 H2O-H2 전처리에 따른 휘발성유기화합물 산화에 미치는 영향)

  • Kim, Moon-Chan;Ko, Sun-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.552-556
    • /
    • 2007
  • In this study, noble metals (Pd, Ru, Ir) were supported to $TiO_2$ catalyst. In order to distribute metals uniformly, $H_2O-H_2$ pretreatment technique was used. Xylene, toluene, and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, and XPS analysis. Pd-Ru, Pd-Ir bimetallic catalysts had multipoint active sites which improved the range of Pd metal state. Bimetallic catalysts had a higher conversion of VOCs than that of monometallic one. The effect of $H_2O-H_2$ pretreatment technique was the enhancement of uniform distribution of Pd particles and promotion of catalytic efficiency. In this study, addition of Ru and Ir metals to Pd promoted oxidation conversion of VOCs. In addition, $H_2O-H_2$ pretreatment promoted removal efficiency of VOCs on the $TiO_2$ support.

Effects of Catalyst Promotion on the Selective Hydrogenation of Biphenol Using Various Pd/C Catalysts

  • Cho, Hong-Baek;Hong, Bum-Eui;Park, Jai-Hyun;Ahn, Sung-Hyun;Park, Yeung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.12
    • /
    • pp.2434-2440
    • /
    • 2008
  • The effect of sodium (Na) promotion was studied in the biphenol (BP) hydrogenation using various Pd/C catalysts. Different amounts of sodium metal were used for promotion with Pd/C and their effects on BP hydrogenation were observed. The promotion order was changed to compare the effect of the position of the promoter in relation to the palladium (Pd) metal on the catalytic activity and yield of the final product, bicyclohexyl-4,4'-diol (BHD). Pd/C catalysts prepared from different methods were also sodium-promoted and the changes of the reaction pathway according to the type of promoted Pd/C catalyst were compared.

New Design in Homogeneous Palladium Catalysis: Study of Transformation of Group 14 Element Compounds and Development of Nanosize Palladium Catalysts

  • Tsuji, Yasushi;Fujihara, Tetsuaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1902-1909
    • /
    • 2007
  • This account reports an overview of our findings in homogeneous Pd-catalyzed reactions. Herein we describe the new design in reactions of Group 14 element compounds and in homogeneous nanosize Pd catalysts. In the early stages of our study, we developed Pd-catalyzed transformations of allylic esters with disilanes, silylcyanides and acylsilanes to the corresponding silylation, cyanation and acylation products, respectively. We also developed a Pd-catalyzed three component coupling reaction of Group 14 element compounds involving 1,3-diene and acid chlorides to form β,γ-unsaturated ketone as a single product. Recently, we focus our attention on modifying the catalytic environment by nanosize Pd in order to improve the performance of Pd catalysts. These nanosystems realize efficient catalytic environment with remarkable enhancement in catalytic activity and unprecedented selectivity.

Studies on the Activity Properties of Pd-only Three-Way Catalyst for the Purification of Automobile Exhaust Emissions (자동차 배기가스 정화용 Pb-only 삼원촉매의 활성특성에 관한 연구)

  • 신병선;김상수;이길우;정명근;배재호;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.667-676
    • /
    • 1999
  • The roles of ceria on three-way catalyst is to improve the noble metal dispersion and thermal stability of support ${\gamma}$-$Al_2O_3$. And, ceria has a oxygen storage capacity(OSC) under fuel rich/lean conditions to improve the operating windows of NOx, THC and CO conversion. However, ceria has weak thermal stability under high temperature due to the crystallite growth. So that, the OSC of ceria is decreased, and then the conversions of NOx, THC and CO is decreased. One way of enhancing the thermal stability and NOx, THC and CO conversion Pd-only catalyst is to improve as well as its thermal stability and oxygen storage capacity of the ceria. Especially, the appropriate mixing ratios of bulk and stabilized ceria are very important for designing principles of Pd-only three-way catalysts. In this paper, we discussed the thermal properties of stabilizedand unstabilized (bulk) ceria, and the oxygen storage capacity (OSC) of catalysts, and found the correlation between activity and the OSC of Pd-only catalysts with various different mixing ratios of bulk and stabilized ceria. Finally, we propose the design principles to improve the thermal stability of washcoated Pd-only catalysts.

  • PDF

High Catalytic Activity and Recyclability of Graphene Oxide Based Palladium Nanocomposites in Sonogashira Reaction

  • Kim, Bo Hyun;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.139.1-139.1
    • /
    • 2013
  • Graphene and graphene oxide (GO) have been modified with palladium nanoparticles (Pd NPs) to develop high performance catalysts for the Sonogashira cross coupling reaction. To understand catalytic performance of Pd NPs on graphene (Pd/G) and Pd NPs on GO (Pd/GO), we monitored their morphological and electronic structural changes before/after Sonogashira reaction using FT-IR, XRD, XPS, and XAFS. Here, we demonstrate that both Pd/G and Pd/GO show high catalytic efficiency toward the Sonogashira reaction, but only Pd/GO revealed excellent recyclability. The remarkable catalytic efficiency of both catalysts is attributed to the high degree of the Pd NP dispersions on supports and thus smaller Pd NPs can provide highly reactive low coordinated Pd atoms. However, we attributed the excellent recyclability of Pd/GO to the presence of oxygen functionalities on GO, which can provide nucleation sites for the detached Pd atoms during the Sonogashira reaction and prevent agglomeration of the Pd NPs since the oxygen functional groups are very reactive to mobile Pd adatoms.

  • PDF

Ligand Effect in Recycled CNT-Pd Heterogeneous Catalyst for Decarboxylative Coupling Reactions

  • Kim, Ji Dang;Pyo, Ayoung;Park, Kyungho;Kim, Gwui Cheol;Lee, Sunwoo;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2099-2104
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active Pd heterogeneous catalyst (CNT-Pd), specifically by reaction of dichlorobis(triphenylphosphine)palladium ($Pd(PPh_3)_2Cl_2$) with thiolated carbon nanotubes (CNTs). The as-prepared CNT-Pd catalysts demonstrated an excellent catalytic activity for the carbon-carbon (C-C) cross-coupling reactions (i.e. Suzuki, Stille, and decarboxylative coupling reactions) under mild conditions. The CNT-Pd catalyst could easily be removed from the reaction mixture; additionally, in the decarboxylative coupling of iodobenzene and phenylpropiolic acid, it showed a six-times recyclability, with no loss of activity. Moreover, once its activity had decreased by repeated recycling, it could easily be reactivated by the addition of phosphine ligands. The remarkable recyclability of the decarboxylative coupling reaction is attributable to the high degree of dispersion of Pd catalysts in CNTs. Aggregation of the Pd catalysts is inhibited by their strong adhesion to the thiolated CNTs during the chemical reactions, thereby permitting their recycling.

A Study on Rinsing Effects of Sn Sensitization and Pd Activation Processes for Uniform Electroless Plating (무전해 도금에서 Sn 민감화와 Pd 활성화 공정의 세척 효과에 대한 연구)

  • Seong-Jae, Jeong;Mi-Se, Chang;Jae-Won, Jeong;Sang-Sun, Yang;Young-Tae, Kwon
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.511-516
    • /
    • 2022
  • Electroless plating is widely utilized in engineering for the metallization of insulator substrates, including polymers, glass, and ceramics, without the need for the application of external potential. Homogeneous nucleation of metals requires the presence of Sn-Pd catalysts, which significantly reduce the activation energy of deposition. Therefore, rinsing conducted during Sn sensitization and Pd activation is a key variable for the formation of a uniform seed layer without the lack or excess of catalysts. Herein, we report the optimized rinsing process for the functionalization of Sn-Pd catalysts, which enables the uniform FeCo metallization of the glass fibers. Rinsing enables good deposition of the FeCo alloy because of the removal of excess catalysts from the glass fiber. Concurrently, excessive rinsing results in a complete removal of the Sn-Pd nucleus. Collectively, the comprehensive study of the proposed nanomaterial preparation and surface science show that the metallization of insulators is a promising technology for electronics, solar cells, catalysts, and mechanical parts.