• 제목/요약/키워드: Pd activation

검색결과 261건 처리시간 0.022초

Curcumin Inhibits TGF-β1-Induced MMP-9 and Invasion through ERK and Smad Signaling in Breast Cancer MDA-MB-231 Cells

  • Mo, Na;Li, Zheng-Qian;Li, Jing;Cao, You-De
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5709-5714
    • /
    • 2012
  • Objective: To evaluate the effects of curcumin on matrixmetalloproteinase-9 (MMP-9) and invasion ability induced by transforming growth factor-${\beta}1$ (TGF-${\beta}1$) in MDA-MB-231 cells and potential mechanisms. Methods: Human breast cancer MDA-MB-231 cells were used with the CCK-8 assay to measure the cytotoxicity of curcumin. After treatment with 10 ng/ml TGF-${\beta}1$, with or without curcumin (${\leq}10{\mu}M$), cell invasion was checked by transwell chamber. The effects of curcumin on TGF-${\beta}1$-stimulated MMP-9 and phosphorylation of Smad2, extracellular-regulated kinase (ERK), and p38 mitogen activated protein kinases (p38MAPK) were examined by Western blotting. Supernatant liquid were collected to analyze the activity of MMP-9 via zymography. Following treatment with PD98059, a specific inhibitor of ERK, and SB203580, a specific inhibitor of p38MAPK, Western blotting and zymography were employed to examine MMP-9 expression and activity, respectively. Results: Low dose curcumin (${\leq}10{\mu}M$) did not show any obvious toxicity to the cells, while $0{\sim}10{\mu}mol/L$ caused a concentration-dependent reduction in cell invasion provoked by TGF-${\beta}1$. Curcumin also markedly inhibited TGF-${\beta}1$-regulated MMP-9 and activation of Smad2, ERK1/2 and p38 in a dose- and time-dependent manner. Additionally, PD98059, but not SB203580, showed a similar pattern of inhibition of MMP-9 expression. Conclusion: Curcumin inhibited TGF-${\beta}1$-stimulated MMP-9 and the invasive phenotype in MDA-MB-231 cells, possibly associated with TGF-${\beta}$/Smad and TGF-${\beta}$/ERK signaling.

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • 제13권4호
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

흰쥐 선조체에서 6-OHDA-유도 도파민 고갈 및 SH-SY5Y 세포주에서 6-OHDA-유도 산화적 스트레스에 대한 l-Deprenyl의 신경 보호효과 (Neuroprotective Effect of l-Deprenyl Against 6-OHDA-Induced Dopamine Depletion in Rat Striatum and 6-OHDA-Induced Oxidative Stress in SH-SY5Y Cells)

  • 김은미;최신규;이경림;김화정
    • 약학회지
    • /
    • 제49권4호
    • /
    • pp.355-364
    • /
    • 2005
  • A neurotoxin, 6-hydroxydopamine (6-OHDA) has long been used to form a Parkinson's disease (PD) model by inducing the lesion in catecholaminergic pathways, particularly the nigrostriatal dopamine (DA) pathway. Whereas l-deprenyl, a selective inhibitor of monoamine oxidase (MAO) type B, is now widely used in the treatment of PD, the precise action mechanism of the drug remains elusive. In this study, we investigated whether l-deprenyl shows protective effect against the DA depletion induced by 6-OHDA in rat brain, and against 6-OHDA-induced neurotoxicity and oxidative stress in catecholaminergic neuroblastoma SH-SY5Y cells that are known to lack MAO-B activity. Pretreatment of l-deprenyl significantly enhanced the striatal DA, 3,4-dihydroxyphenylacetic acid, homovanilic acid, and 3-methoxytyramine levels compared to the untreated 6-OHDA-lesioned rat, indicating that l-deprenyl pretreatment prevents 6-OHDA-induced depletion of not only striatal dopamine but also its metabolites. Treatment of 6-OHDA for 24hrs decreased the cell viability and increase the generation of ROS in dose-dependent manners. We further investigated whether caspase activity is involved in the action of l-deprenyl. Treatment of l-deprenyl $(0.1\~100{\mu}M)$ did not produce any changes in 6-OHDA-induced cleavage of poly (ADP-ridose) polymerase in SH-SY5Y cells. Our results suggest that the neuroprotective effect of l-deprenyl against 6-OHDA is due to its increased scavenger activity, but independent of inhibition of MAO-B or caspase-3 activation.

Inhibition of Monoamine Oxidase B by Cigarette Smoke Constituents

  • Lim, Heung-Bin;Sohn, Hyug-Ok;Lee, Young-Gu;Moon, Ja-Young;Kang, Young-Kook;Kim, Yong-Ha;Lee, Un-Chul;Lee, Dong-Wook
    • 한국연초학회지
    • /
    • 제19권2호
    • /
    • pp.136-144
    • /
    • 1997
  • Cigarette smoking is known to suppress both 1-methy14-phenyl-155,Ltetrahydropy-ridine (MPTP)-induced parkinsonism and idiopathic Parkinson's disease (PD). However, the precise mechanism underlying its protective action against PD is not clearly elucidated yet. In order to find possible clue on the mechanism of protective action of smoking, we investigated the inhibitory effect of cigarette smoke components on rat brain mitochondria1 monoamine oxidase B (MAO-B), responsible enzyme for the activation of MPTP to its toxic metabolitesr and identified the components having an inhibitory potency on this enzyme from cigarette smoke. Total 31 eligible constituents including nicotine were selected from cigarette smoke condensates via solvents partitioning and silica gel chromatographic separation, and inhibitory potencies of 19 components on MAO-B were determined. Hydroquinone and methylcatechol, the phenolic components, showed the strongest inhibitory potencies on MAO-B activity in the components tested. 3,4-Dihydroxybenzylamino, myosmine and indole in basic fracton, eugenol in phenolic fraction, and farnesol in neutral fraction also inhibited the enzyme activity dose-dependently. Among tobacco alkaloids tested only myosmine was effective for the inhibition of this enzyme. These results suggest that the decrease in MAO-B activity by such components derived from cigarette smoke seems to be related to the suppression of MPTP-induced neurotoxicity and to the less incidence of Parkinson's disease in smokers than in nonsmokers.

  • PDF

Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation of C3H10T1/2 mesenchymal stem cells

  • Xu, Dao-Jing;Zhao, Ying-Ze;Wang, Jin;He, Juan-Wen;Weng, Ya-Guang;Luo, Jin-Yong
    • BMB Reports
    • /
    • 제45권4호
    • /
    • pp.247-252
    • /
    • 2012
  • Although previous studies have demonstrated that BMP9 is highly capable of inducing osteogenic differentiation of mesenchymal stem cells, the molecular mechanism involved remains to be fully elucidated. In this study, we showed that BMP9 simultaneously promotes the activation of Smad1/5/8, p38 and ERK1/2 in C3H10T1/2 cells. Knockdown of Smad4 with RNA interference reduced nuclear translocation of Smad1/5/8, and disrupted BMP9-induced osteogenic differentiation. BMP9-induced osteogenic differentiation was blocked by p38 inhibitor SB203580, whereas enhanced by ERK1/2 inhibitor PD98059. SB203580 decreased BMP9-activated Smads singling, and yet PD98059 stimulated Smads singling in C3H10T1/2 cells. The effects of inhibitor were reproduced with adenovirus expressing siRNA targeted p38 and ERK1/2, respectively. Taken together, our findings revealed that Smads, p38 and ERK1/2 are involved in BMP9-induced osteogenic differentiation. Also, it is noteworthy that p38 and ERK1/2 may play opposing regulatory roles in mediating BMP9-induced osteogenic differentiation of C3H10T1/2 cells.

SD Rat에 있어서 출생 전.후에 걸친 Di(n-butyl) Phthalate 노출에 의한 발생면역독성 (Developmental Immunotoxicity in SD Rat Pups Exposed by Di(n-butyl) Phthalate through Pre and Postnatal)

  • 엄준호;정승태;이종권;박재현;권태우;김지영;오혜영;김형수
    • Toxicological Research
    • /
    • 제18권4호
    • /
    • pp.401-409
    • /
    • 2002
  • Phthalate esters have possible effects on the endocrine system. Di-n-butyl phthalate (DBP) is one of the most commonly wed phthalic acid esters (PAEs). It is extensively wed as a plasticizer in elastomers, as a solvent for printing inks and resins, and as a textile lubricating agent. It is also present in the formulations of various cosmetic products. DBP has been identified as a reproductive toxicant in several animal species and also know as a endocrine disruptor. The objective of this study was to investigate the effect of DBP on developmental immune Junction wing rat pups as experimental animals. Timed-bred pregnant SD rats were orally dosed with 0, 250, 500, or 750 mg DBP/kg body weight once a day from gestational day (GD) 5 to 18 and postpartum day (PD) 3 to 18. On PD22, the dams and their pups were euthanized and examined for alteration in parameters associated to immune function. The results showed no significant changes in body weight, thymus weight, thymus and spleen cellularities, the polyclonal activation respones of splenocyte with ConA and LPS, and also the distribution of arterial blood cells and thymocyto subsets in both rat dam and pups. However DBP exposure on rat dam resulted in increases of liver weights of dam and their pups except 750 mg DBP/kg, and body and spleen weights in pups except 750 mg DBP/kg. On the other hands, distribution rates of CD8+ T cells at 500 mg DBP/kg and B cells at 750 mg DBP/kg among splenocyte subsets were significantly increased in rat pups, unlike dams. Reasons of these distribution alterations of CD8+ T cells and B cells in rat pups are under study.

마우스 치주인대 섬유모세포에서 RANKL 조절에 대한 p38 MAP kinase의 역할 (The role of p38 MAP kinase on RANKL regulation in mouse periodontal ligament fibroblasts)

  • 김재철;최득철;김영준
    • Journal of Periodontal and Implant Science
    • /
    • 제37권sup2호
    • /
    • pp.311-323
    • /
    • 2007
  • Receptor activation of nuclear factor ${\kappa}$ B ligand (RANKL)은 파골세포의 분화와 기능에 중요한 역할을 하는 단백질로 이들 물질의 조절에는 p38 MAP kinase가 관여한다. 그러나 치주인대 섬유모세포에서 RANKL 발현 시 p38 MAP kinase의 역할은 잘 알려져 있지 않다. 이에 이번 연구는 마우스 치주인대 섬유모세포의 $IL-1{\beta}-induced$ RANKL 발현과정에서 p38의 역할을 규명하고자 하여 다음과 같은 결과를 얻었다. 마우스 치주인대 섬유모세포에 $IL-1{\beta}$ (1ng/ml)의 자극은 수용성 RANKL의 합성을 증가시켰다. 수용성 RANKL의 합성은 p38 MAP kinase 억제제인 SB203580에 의해 농도 의존적으로 억제되었으나 다른 MAP kinase 억제제인 SP600125, JNK 억제제와 PD98059, ERK 억제제에 의해서는 수용성 RANKL의 합성이 조절되지 않았다. NF-kB 억제제에 의해서도 수용성 RANKL의 합성이 억제되지 않았다. RANKL 유전자의 발현은 $IL-1{\beta}$로 자극 시에는 대조군에 비해 약 5배의 발현 증가를 보였으나 SB203580으로 전처치 시 $IL-1{\beta}$ (1ng/ml)로 자극시보다 약 1.5배의 감소를 보였다. 그러나 SP600125, PD98059, 및 NF-kB 억제제로 전처치한 경우에는 $IL-1{\beta}$로 자극한 경우와 비슷한 수준을 보였다. $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기가 90분 이었으나 SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 RANKL 유전자의 반감기는 60분으로 감소하였다. Cycloheximide 전처리 시 SB203580에 의한 RANKL 유전자 발현 억제가 관찰되지 않았다. 단백질 분석결과 p38 MAP kinase의 인산화 활성은 30분까지 증가하였으나 그 이후 감소하여 2시간째에는 그 발현이 미약하였다. SB203580로 전처치 후 $IL-1{\beta}$로 자극 시 p38 MAP kinase의 인산화 활성이 감소하였다. 이상의 결과는 p38 MAP kinase가 RANKL 유전자 조절에 중요한 역할을 담당하고 있음을 시사한다.

생쥐 착상 전 배아에서 용해된 Matrigel에 의한 Mitogen Activated Protein Kinase 활성의 조절 (Regulation of Mitogen Activated Protein Kinase Activity by Solubilized Matrigel in the Preimplantation Mouse Embryos)

  • 강병문;정병목;계명찬
    • 한국발생생물학회지:발생과생식
    • /
    • 제6권1호
    • /
    • pp.1-6
    • /
    • 2002
  • 세포외기질(exrtracellular matrix, ECM)에 의한 생쥐 초기 배아의 발생 조절 현상의 기작 규명을 위한 연구의 일환으로 Engelbreth-Holm-Swarm(EHS) mouse sarcoma의 세포외기질로부터 추출한 ECM 복합체인 Matrigel의 성장인자 제거형(GFR-Matrigel)을 생쥐 포배에 처리한 후 mitogen activated protein kinase (MAPK, ERK1/2) 활성 의 변화를 조사하였다. Matrigel 처리 후 10분 이내에 배아의 MAPK 활성이 유의하게 증가하였고, 60분 후에도 유의하게 높은 활성을 유지하였다. 한편 MAPK cascade의 저해제인 PD098059를 전처리한 경우 Matrigel에 의한 MAPK 활성의 증가가 관찰되지 않았다. Matrigel 배양액 내에서 12시간 동안 배양한 포배의 MAPK 활성은 대조군과는 현격한 차이를 보였다. 이러한 결과로부터 ECM에 의한 생쥐초기 배아의 발생 촉진효과 발현기작에는 하위 신호전달 과정의 MAPK 활성화 과정이 관여하는 것으로 사료된다.

  • PDF

전기화학 공정을 이용한 질화규소 기판 상의 금속 전극 형성에 관한 연구 (Formation of Metal Electrode on Si3N4 Substrate by Electrochemical Technique)

  • 신성철;김지원;권세훈;임재홍
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.530-538
    • /
    • 2016
  • There is a close relationship between the performance and the heat generation of the electronic device. Heat generation causes a significant degradation of the durability and/or efficiency of the device. It is necessary to have an effective method to release the generated heat. Based on demands of the printed circuit board (PCB) manufacturing, it is necessary to develop a robust and reliable plating technique for substrates with high thermal conductivity, such as alumina ($Al_2O_3$), aluminium nitride (AlN), and silicon nitride ($Si_3N_4$). In this study, the plating of metal layers on an insulating silicon nitride ($Si_3N_4$) ceramic substrate was developed. We formed a Pd-$TiO_2$ adhesion layer and used APTES(3-Aminopropyltriethoxysilane) to form OH groups on the surface and adhere the metal layer on the insulating $Si_3N_4$ substrate. We used an electroless Ni plating without sensitization/activation process, as Pd particles were nucleated on the $TiO_2$ layer. The electrical resistivity of Ni and Cu layers is $7.27{\times}10^{-5}$ and $1.32{\times}10^{-6}ohm-cm$ by 4 point prober, respectively. The adhesion strength is 2.506 N by scratch test.

7,8,4'-Trihydroxyisoflavone, a Metabolized Product of Daidzein, Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

  • Ko, Yong-Hyun;Kim, Seon-Kyung;Kwon, Seung-Hwan;Seo, Jee-Yeon;Lee, Bo-Ram;Kim, Young-Jung;Hur, Kwang-Hyun;Kim, Sun Yeou;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.363-372
    • /
    • 2019
  • Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4'-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4'-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4'-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4'-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4'-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta ($GSK-3{\beta}$) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4'-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4'-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/$GSK-3{\beta}$ pathways.