• Title/Summary/Keyword: PbS quantum dots

Search Result 22, Processing Time 0.031 seconds

Enhanced Photosensitivity in Monolayer MoS2 with PbS Quantum Dots

  • Cho, Sangeun;Jo, Yongcheol;Woo, Hyeonseok;Kim, Jongmin;Kwak, Jungwon;Kim, Hyungsang;Im, Hyunsik
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.47-49
    • /
    • 2017
  • Photocurrent enhancement has been investigated in monolayer (1L) $MoS_2$ with PbS quantum dots (QDs). A metal-semiconductor-metal (Au-1L $MoS_2$-Au) junction device is fabricated using a standard photolithography method. Considerably improved photo-electrical properties are obtained by coating PbS QDs on the Au-1L $MoS_2$-Au device. Time dependent photoconductivity and current-voltage characteristics are investigated. For the QDs-coated $MoS_2$ device, it is observed that the photocurrent is considerably enhanced and the decay life time becomes longer. We propose that carriers in QDs are excited and transferred to the $MoS_2$ channel under light illumination, improving the photocurrent of the 1L $MoS_2$ channel. Our experimental findings suggest that two-dimensional layered semiconductor materials combined with QDs could be used as building blocks for highly-sensitive optoelectronic detectors including radiation sensors.

Observation of Carrier Multiplication via Internal Quantum Efficiency Exceeding 100% in PbS QDs Monolayer Solar Cells

  • Park, So Yeon;Chung, Hyun Suk;Han, Gill Sang;Su, Jang Ji;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.467.1-467.1
    • /
    • 2014
  • Quantum dots (QD) solar cells has received considerable attention due to their potential of improving the overall conversion efficiency by harvesting excess energy via multiple excitons generation (MEG). Although there have been many reports which show MEG phenomena by using optical measurement of quantum dots themselves, carrier multiplication in real QD photovoltaic devices has been sparsely reported due to difficulty in dissociation of excitons and charge collection. In this reports, heterojunction QD solar cells composed of PbS QD monolayer on highly crystalline $TiO_2$ thin films were fabricated by using Langmuir-Blodgett deposition technique to significantly reduce charge recombination at the interfaces between each QD. The PbS CQDs monolayer was characterized by using UV-vis, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The internal quantum efficiency (IQE) for the monolayer QD solar cells was obtained by measurement of external quantum efficiency and determining light absorption efficiency of active layer. Carrier multiplication was observed by measuring IQE greater than 100% over threshold photon energy. Our findings demonstrate that monolayer QD solar cell structure is potentially capable of realizing highly efficient solar cells based on carrier multiplication.

  • PDF

Photovoltaic Properties of Tandem Structure Consisting of Quantum Dot Solar cell and Small Molecule Organic Solar cell

  • Jang, Jinwoong;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.2-249.2
    • /
    • 2015
  • Connecting two or more sub-cells is a simple and effective way of improving power conversion efficiency (PCE) of solar cells, and the theoretical efficiency of this tandem cell is known to reach 85~88% of the sum of the sub-cell's efficiencies. There are two ways of connecting sub-cells in the tandem structure, i.e. parallel and series connection. The parallel connection can increase the short circuit current (Jsc) and the series connection can increase the open circuit voltage (Voc). Although various tandem structures have been studied, the full use of incident light and optimization of cell efficiency is still limited. In this work, we designed series tandem solar cells consisting of lead sulfide (PbS) quantum dots/zinc oxide-based QDSC and zinc phthalocyanine (ZnPc)/C60-based small molecule OSCs. It is expected that the loss of the incident light is minimized because the absorption range of the PbS quantum dots and ZnPc is significantly different, and the Voc increases according to the Kirchhoff's law.

  • PDF

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Stability Assessment of Lead Sulfide Colloidal Quantum Dot Based Schottky Solar Cell

  • Song, Jung-Hoon;Kim, Jun-Kwan;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.413-413
    • /
    • 2012
  • Lead sulfide (PbS) Colloidal quantum dots (CQDs) are promising material for the photovoltaic device due to its various outstanding properties such as tunable band-gap, solution processability, and infrared absorption. More importantly, PbS CQDs have large exciton Bohr radius of 20 nm due to the uniquely large dielectric constants that result in the strong quantum confinement. To exploit desirable properties in photovoltaic device, it is essential to fabricate a device exhibiting stable performance. Unfortunately, the performance of PbS NQDs based Schottky solar cell is considerably degraded according to the exposure in the air. The air-exposed degradation originates on the oxidation of interface between PbS NQDS layer and metal electrode. Therefore, it is necessary to enhance the stability of Schottky junction device by inserting a passivation layer. We investigate the effect of insertion of passivation layer on the performance of Schottky junction solar cells using PbS NQDs with band-gap of 1.3 eV. Schottky solar cell is the simple photovoltaic device with junction between semiconducting layer and metal electrode which a significant built-in-potential is established due to the workfunction difference between two materials. Although the device without passivation layer significantly degraded in several hours, considerable enhancement of stability can be obtained by inserting the very thin LiF layer (<1 nm) as a passivation layer. In this study, LiF layer is inserted between PbS NQDs layer and metal as an interface passivation layer. From the results, we can conclude that employment of very thin LiF layer is effective to enhance the stability of Schottky junction solar cells. We believe that this passivation layer is applicable not only to the PbS NQDs based solar cell, but also the various NQDs materials in order to enhance the stability of the device.

  • PDF

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Electronic Structure and Elemental Composition of the Lead Sulfide Colloidal Quantum Dots Depending on the Types of Ligand and Post-Treatment (리간드 종류와 후처리 공정에 따른 황화납 콜로이드 양자점 박막의 전자 구조 및 원소 조성 분석)

  • Kim, Tae Gun;Choi, Hyekyoung;Jeong, Sohee;Kim, Jeong Won
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.6
    • /
    • pp.402-409
    • /
    • 2016
  • Thin films of lead sulfide colloidal quantum dots (CQDs) of 2.8 nm in diameter are fabricated and their surfaces are passivated by 3-mercaptopropionic acid (MPA) ligand or hybrid type ($MPA+CdCl_2$) ligand, respectively. The changes in valence band electronic structure and atomic composition of each PbS CQD film upon post-treatment such as air, N2 annealing or UV/Ozone have been studied by photoelectron spectroscopy. The air annealing makes the CQD fermi level to move toward the valence band leading to "p-type doping" regardless of ligand type. The UV/Ozone post-treatment generates $Pb(OH)_2$, $PbSO_x$ and PbO on both CQD surfaces. But the amount of the PbO has been reduced in hybrid type ligand case, especially. That is probably because the extra Pb cations in (111) surface are additionally passivated by $Cl_2$ ligand, which limits the reaction between the Pb cation and ozone.

Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes (세슘납할로겐화물 페로브스카이트 기반 LED 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.737-749
    • /
    • 2016
  • Recently perovskite materials with much cheaper cost and marvellous optoelectronic properties have been studied for next generation LED display devices overseas. Technology development trends of inorganic $CsPbX_3$(X=halogen) based LEDs (PeLEDs) with assumed high stability were investigated on literature worldwide. It was found that syntheses methods of these nanocrystals (NCs, mainly quantum dots, QDs) made great progress. A new room temperature synthesis method showed outstanding PL (photoluminescence) properties such as high quantum yield (QY), narrow emission width, storage stability comparable with, or often exceeding those of conventional hot injection method and CdSe@ZnS type inorganic colloidal QDs. PeLEDs with shell layers might be more promising, indicating urgent real research start of this solution processing technology for small businesses in Korea.

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung;Pham, Tung Thanh;Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1443-1454
    • /
    • 2011
  • Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.

Flexible Cu-In-Se Quantum Dot-Sensitized Solar Cells Based on Nanotube Electrodes (나노튜브 전극을 기반으로 한 플렉서블 양자점 감응 태양전지)

  • Kim, Jae-Yup
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.45-48
    • /
    • 2019
  • Quantum dots (QDs) are an attractive material for application in solar energy conversion devices because of their unique properties including facile band-gap tuning, a high-absorption coefficient, low-cost processing, and the potential multiple exciton generation effect. Recently, highly efficient quantum dot-sensitized solar cells (QDSCs) have been developed based on CdSe, PbS, CdS, and Cu-In-Se QDs. However, for the commercialization and wide application of these QDSCs, replacing the conventional rigid glass substrates with flexible substrates is required. Here, we demonstrate flexible CISe QDSCs based on vertically aligned $TiO_2$ nanotube (NT) electrodes. The highly uniform $TiO_2$ NT electrodes are prepared by two-step anodic oxidation. Using these flexible photoanodes and semi-transparent Pt counter electrodes, we fabricate the QDSCs and examine their photovoltaic properties. In particular, photovoltaic performances are optimized by controlling the nanostructure of $TiO_2$ NT electrodes.