• 제목/요약/키워드: PbS quantum dots

검색결과 22건 처리시간 0.027초

Synthesis of Ultra-small PbS Nanocrystal Quantum Dots for Energy Applications

  • 최혜경;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.535-535
    • /
    • 2012
  • We present a new synthetic route and characterization for ultra small sized PbS quantum dots in extreme quantum confinement with 1.5 to 2.9 nm in diameter. We obtained a series of nanocrystals with first absorption wavelength ranging from 580 to 820 nm (2.1-1.5 eV). To get this result, PbS quantum dots size is finely controlled by adjusting the growth temperature in the range of $70-95^{\circ}C$. We demonstrate that photoluminescence (PL) shows a red shift with respect to the first absorption peak that increases with decreasing PbS quantum dots size and ranges from about 500 to 125 meV as the mean PbS quantum dots diameter increases from 1.5 to 2.9 nm. We further created the assembled PbS quantum dot solids and investigated the transport properties for energy applications.

  • PDF

Size-dependent Optical and Electrical Properties of PbS Quantum Dots

  • Choi, Hye-Kyoung;Kim, Jun-Kwan;Song, Jung-Hoon;Jeong, So-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.186-186
    • /
    • 2012
  • This report investigates a new synthetic route and the size-dependent optical and electrical properties of PbS nanocrystal quantum dots (NQDs) in diameters ranging between 1.5 and 6 nm. Particularly we synthesize ultra-small sized PbS NQDs having extreme quantum confinement with 1.5~2.9 nm in diameter (2.58~1.5 eV in first exciton energy) for the first time by adjusting growth temperature and growth time. In this region, the Stokes shift increases as decreasing size, which is testimony to the highly quantum confinement effect of ultra-small sized PbS NQDs. To find out the electrical properties, we fabricate self-assembled films of PbS NQDs using layer by layer (LBL) spin-coating method and replacing the original ligands with oleic acid to short ligands with 1, 2-ethandithiol (EDT) in the course. The use of capping ligands (EDT) allows us to achieve effective electrical transport in the arrays of solution processed PbS NQDs. These high-quality films apply to Schottky solar cell made in an glass/ITO/PbS/LiF/Al structure and thin-film transistor varying the PbS NQDs diameter 1.5~6 nm. We achieve the highest open-circuit voltage (<0.6 V) in Schottky solar cell ever using PbS NQDs with first exciton energy 2.58 eV.

  • PDF

Optical Properties of PbS Quantum Dots (QDs) Precipitated in Nd3+-Containing Glasses

  • Park, Won Ji;Heo, Jong
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.146-149
    • /
    • 2015
  • Silicate glasses with different $Nd_2O_3$ concentrations were prepared through conventional melt-quenching methods while PbS quantum dots (QDs) were precipitated through heat treatment. The peak wavelengths of absorption and the photoluminescence of PbS QDs shifted to the short-wavelength side as the concentration of $Nd_2O_3$ increased. The electron energy loss spectroscopy (EELS) indicated that $Nd^{3+}$ ions were preferentially distributed inside the PbS QDs instead of the glass matrix. In addition, there was no significant change in the lifetimes of the $Nd^{3+}:^4F_{3/2}$ fluorescence between the as-prepared glass ($607{\mu}s$) and the heat-treated glass($576{\mu}s$). $Nd^{3+}$ ions were surrounded by oxygen instead of sulfur and the Nd-O clusters probably acted as nucleating centers for the formation of PbS QDs inside the glasses.

Size Control of PbS Colloidal Quantum Dots and Their Application to Photovoltaic Devices

  • Lee, Wonseok;Ryu, Ilhwan;Choi, Geunpyo;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.249.1-249.1
    • /
    • 2015
  • Quantum dots (QDs) are attracting growing attention for photovoltaic device applications because of their unique electronic, optical and physical properties. Lead sulfide (PbS) QDs are one of the most widely studied materials for the devices and known to have size-tunable properties. In this context, we investigated the relationship between the size of PbS QDs and two synthesizing conditions, a concentration of ligand, oleic acid in this work, and injection temperature. The inverted colloidal quantum dot solar cells based on the heterojunction of n-type zinc oxide layer and p-type PbS QDs were also fabricated. The size of the QDs and cell properties were observed to depend on both the QD synthesizing conditions, and hence the overall efficiency of the cell could vary even though the size of QDs used was same. The QD synthesizing conditions were finally optimized for the maximum cell efficiency.

  • PDF

Atomization 방법을 이용한 PbTe quantum dots이 함유된 비선형 광섬유의 제조 및 광특성 (Fabrication of Nonlinear Optical Fiber Doped with PbTe Quantum Dots Using Atomization Doping Process and its Optical Property)

  • 주성민;이수남;김택중;한원택
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2004년도 제15회 정기총회 및 동계학술발표회
    • /
    • pp.360-361
    • /
    • 2004
  • An atomization doping process is proposed to manufacture nonlinear optical fiber containing higher concentration of PbTe nano-particles in the core of the fiber than that by the conventional solution doping process. The absorption peaks appeared near 725nm, 880nm, and 1050nm are attributed to the PbTe quantum dots in the fiber core.

  • PDF

Thioacetic-Acid Capped PbS Quantum Dot Solids Exhibiting Thermally Activated Charge Hopping Transport

  • Dao, Tung Duy;Hafez, Mahmoud Elsayed;Beloborodov, I.S.;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.457-465
    • /
    • 2014
  • Size-controlled lead sulfide (PbS) quantum dots were synthesized by the typical hot injection method using oleic acid (OA) as the stabilizing agent. Subsequently, the ligand exchange reaction between OA and thioacetic acid (TAA) was employed to obtain TAA-capped PbS quantum dots (PbS-TAA QDs). The condensation reaction of the TAA ligands on the surfaces of the QDs enhanced the conductivity of the PbS-TAA QDs thin films by about 2-4 orders of magnitude, as compared with that of the PbS-OA QDs thin films. The electron transport mechanism of the PbS-TAA QDs thin films was investigated by current-voltage (I-V) measurements at different temperatures in the range of 293 K-473 K. We found that the charge transport was due to sequential tunneling of charge carriers via the QDs, resulting in the thermally activated hopping process of Arrhenius behavior.

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • 김경남;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

PbS Quantum-dots in Glasses

  • Liu, Chao;Heo, Jong
    • 세라미스트
    • /
    • 제10권3호
    • /
    • pp.7-14
    • /
    • 2007
  • PbS QDs in glasses have attracted much attention due to the potentials for near-infrared applications. Growth of PbS QDs in the glass is discussed and size of PbS QDs formed in the glass can be tuned by varying the thermal treatment conditions. Hyperbolic-band approximation and four-band envelope function provide good simulation of the exciton energies of PbS QDs. Absorption and photoluminescence of PbS QDs was tuned into $1{\sim}2{\mu}m$ wave-length regime with large full width at half maximum photoluminescence intensity (>160 nm). Photoluminescence intensity of PbS QDs in the glasses was closely related to size of quantum dots, temperature, excitation and defects. Decrease in temperature shifted the photoluminescence bands to shorter wavelength and switched the photoluminescence from darkened state and brightened state.

  • PDF

Synthesis and Characterization of ZnO/TiO2 Photocatalyst Decorated with PbS QDs for the Degradation of Aniline Blue Solution

  • Lee, Jong-Ho;Ahn, Hong-Joo;Youn, Jeong-Il;Kim, Young-Jig;Suh, Su-Jeong;Oh, Han-Jun
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.900-909
    • /
    • 2018
  • A $ZnO/TiO_2$ photocatalyst decorated with PbS quantum dots (QDs) was synthesized to achieve high photocatalytic efficiency for the decomposition of dye in aqueous media. A $TiO_2$ porous layer, as a precursor photocatalyst, was fabricated using micro-arc oxidation, and exhibited irregular porous cells with anatase and rutile crystalline structures. Then, a ZnO-deposited $TiO_2$ catalyst was fabricated using a zinc acetate solution, and PbS QDs were uniformly deposited on the surface of the $ZnO/TiO_2$ photocatalyst using the successive ionic layer adsorption and reaction (SILAR) technique. For the PbS $QDs/ZnO/TiO_2$ photocatalyst, ZnO and PbS nanoparticles are uniformly precipitated on the $TiO_2$ surface. However, the diameters of the PbS particles were very fine, and their shape and distribution were relatively more homogeneous compared to the ZnO particles on the $TiO_2$ surface. The PbS QDs on the $TiO_2$ surface can induce changes in band gap energy due to the quantum confinement effect. The effective band gap of the PbS QDs was calculated to be 1.43 eV. To evaluate their photocatalytic properties, Aniline blue decomposition tests were performed. The presence of ZnO and PbS nanoparticles on the $TiO_2$ catalysts enhanced photoactivity by improving the absorption of visible light. The PbS $QDs/ZnO/TiO_2$ heterojunction photocatalyst showed a higher Aniline blue decomposition rate and photocatalytic activity, due to the quantum size effect of the PbS nanoparticles, and the more efficient transport of charge carriers.

황화납 양자점 감지막을 통해 감도가 개선된 수소센서 (Sensitivity enhancement of H2 gas sensor using PbS quantum dots)

  • 김세완;김나리;권진범;김재건;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.