• Title/Summary/Keyword: Pb-Sb alloy

Search Result 11, Processing Time 0.023 seconds

The Selective Removal of Sb and Pb from Molten Bi-Pb-Sb Alloy by Oxidation (용융(熔融) Bi-Pb-Sb계(系) 합급(合金)의 산화(酸化)에 의한 Sb과 Pb 제거(除去))

  • Kim, Se-Jong;Son, In-Joon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • In this study, behaviors of removing Sb and Pb by oxidation of molten Bi-Pb-Sb alloy which is a by-product of non-ferrous smelting process was investigated. The molten alloy was oxidized at 1173 K by bubbling $N_2+O_2$ gas through a submerged nozzle. The Sb was removed and recovered as mixed phase of $Sb_2O_3$ and metal Sb. In the case of bubbling $N_2+O_2$ gas into molten Bi-Pb alloy at 923 K, Pb was oxidized and removed to slag. But Bi could not be refined due to simultaneous oxidization of Bi with Pb.

Creep Deformation Behaviors of Tin Pest Resistant Solder Alloys (Tin Pest 방지 솔더합금의 크리프 특성)

  • Kim S. B.;Yu Jin;Sohn Y. C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.47-52
    • /
    • 2005
  • Worldwide movement for prohibition of Pb usage drives imminent implementation of Pb-free solders in microelectronic packaging industry. Reliability information of Pb-free solders has not been completely constructed yet. One of the potential reliability concerns of Pb-free solders is allotropic transformation of Sn known as tin pest. Volume increase during the formation of tin pest could deteriorate the reliability of solder joints. It was also reported that the addition of soluble elements (i.e. Pb, Bi, and Sb) into Sn can effectively suppress the tin pest. However, the mechanical properties of the tin pest resistant alloys have not been studied in detail. In this study, lap shear creep test was conducted with Sn and Sn-0.7Cu based solder alloys doped with minor amount of Bi or Sb. Shear strain rates of the alloy were generally higher than those of Sn-3.5Ag based alloys. Rupture strains and corresponding Monkman- Grant products were largest for Sn-0.5Bi alloy and smallest for Sn-0.7Cu-0.5Sb alloy. Rupture surface Sn-0.5Bi alloy showed highly elongated $\beta$-Sn globules necked to rupture by shear stresses, while elongation of $\beta$-Sn globules of Sn-0.7Cu-0.5Sb alloy was relatively smaller.

  • PDF

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Effect of Phosphoric Acid on the Electronic and Diffusion Properties of the Anodic Passive Layer Formed on Pb-1.7%Sb Grid of Lead-acid Batteries

  • El-Rahman, H.A. Abd;Salih, S.A.;El-Wahab, A.M. Abd
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.76-84
    • /
    • 2011
  • Potentiostatic oxidation of Pb-1.7%Sb alloy used in the manufacture of grids of lead-acid batteries over the potential range from -1.0V to 2.3V in 5M $H_2SO_4$ in the absence and the presence of 0.4M $H_3PO_4$ and the self-discharge characteristics of the oxide layer formed is studied by electrochemical impedance spectroscopy (EIS). Depending on the potential value, sharp variations in resistance and capacitance of the alloy are recorded during the oxidation and they can be used for identification of the various substances involved in passive layer. Addition of $H_3PO_4$ is found to deteriorate the insulating properties of the passive layer by the retardation of the formation of $PbSO_4$. $H_3PO_4$ completely inhibits the current and impedance fluctuations recorded in $H_3PO_4$-free solutions in the potential range 0.5 V-1.7 V. These fluctuations are attributed to the occurrence of competitive redox processes that involve the formation of $PbSO_4$, $PbOSO_4$, PbO and $PbO_2$ and the repeated formation and breakdown of the passive layer. Self-discharge experiments indicate that the amount of $PbO_2$ formed in the presence of $H_3PO_4$ is lesser than in the $H_3PO_4$-free solutions. The start of transformation of $PbSO_4$ into $PbO_2$ is greatly shortened. $H_3PO_4$ facilitates the diffusion process of soluble species through the passive layer ($PbSO_4$ and basic $PbSO_4$) but impedes the diffusion process through $PbO_2$.

Development of Hybrid (Sb/Ca) Flooded Lead-Acid Battery for Minimizing Water Loss (감액 특성 향상을 위한 하이브리드(Sb/Ca) 액식 연축전지 개발)

  • Song, Seung Yun;Lim, Tae Seop;Kim, Sung Jun;Jung, Yeon-Gil;Yang, SeungCheol
    • Korean Journal of Materials Research
    • /
    • v.32 no.3
    • /
    • pp.146-152
    • /
    • 2022
  • One disadvantage of deep cycle flooded lead-acid batteries is increasing water loss caused by use of (+) Pb-Sb / (-) Pb-Sb alloy grid. Water loss is generated by the emission of hydrogen gas from the (-) electrode during battery charging. In this paper, we maintain cycle life aspect through the development of hybrid flooded lead-acid batteries to which a (+) Pb-Sb / (-) Pb-Ca grid is applied and deal with the improvement of water loss. The amount of water loss compared to that of the (-) Pb-Sb grid decreased when Ca was added to the (-) Pb grid. For the (-) Pb-Ca grid, it was confirmed that the time to reach 0.0 V, at which water decomposition occurs, was increased compared to that of the (-) Pb-Sb grid at the NPV (Negative Potential Voltage). In the cycle life test conducted with the BCI (Battery Council International) standard, compared to the (+) Pb-Ca grid, the (+) Pb-Sb grid increased the life cycle of the batteries and the (+) Pb-Ca grid showed an early end of life due to PbO corrosion layer generation, as determined through SEM / EDS and Tear Down analysis. In conclusion, by addition of Sb to (+) Pb grid and Ca to (-) Pb grid, we developed a hybrid flooded lead-acid battery that meets user requirements to improve water loss characteristics and preserve cycle life characteristics.

Interfacial Reaction Characteristics of a Bi-20Sb-10Cu-0.3Ni Pb-free Solder Alloy on Cu Pad (Bi-10Cu-20Sb-0.3Ni 고온용 무연 솔더와 Cu와의 계면 반응 특성)

  • Kim, Ju-Hyung;Hyun, Chang-Yong;Lee, Jong-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Interfacial reaction characteristics of a Bi-10Cu-20Sb-0.3Ni Pb-free alloy on Cu pad was investigated by reflow soldering at $430^{\circ}C$. The thickness of interfacial reaction layers with respect to the soldering time was also measured. After the reflow soldering, it was observed that a $(Cu,Ni)_2Sb$, a $Cu_4Sb$ intermetallic layer, and a haze layer, which is consisted of Bi and $Cu_4Sb$ phases, were successively formed at the Bi-10Cu-20Sb-0.3Ni/Cu interface. The total thickness of the reaction layers was found to be linearly increased with increasing of the reflow soldering time up to 120 s. As the added Ni element did not participate in the formation of the thickest $Cu_4Sb$ interfacial layer, suppression of the interfacial growth was not observed.

Energy Efficient Alloy Design in PSN-PMN-PZT Ceramic System for Piezoelectric Transformer Application (고효율 압전 트랜스포머용 PSN-PMN-PZT 조성 설계)

  • Choi Yong-Gil;Ur Soon-Chul;Yoon Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.814-817
    • /
    • 2005
  • In order to enhance energy efficiency in high electric conversion devices such as Power transformers, which need to have high power properties, an alloy design approach in $Pb(Zr,Ti)O_3(PZT)$ base ceramic system was attempted $0.03Pb(Sb_{0.5}Nb_{0.5})O_3-0.03Pb(Mn_{1/3}Nb_{2/3})O_3-(0.94-x)PbTiO_3-xPbZrO_3$[PSN-PMN- PZT] ceramics were synthesized by conventional bulk ceramic processing technique. To improve power properties, the various Zr/Ti ratio was varied ]lear their morphotropic phase boundary (MPB) composition of PSN-PMN-PZT system and their effects on subsequent piezoelectric and dielectric properties for the transformer application at high power were systematically investigated using an impedance analyzer. Microstructure and phase information were characterized using X-ray diffractometer (XRD), a scanning electron microscope (SEM) and others. When the Zr/Ti ratio was 0.415/0.465, the value of $Q_m\;and\;k_p$ were shown to reach to the maximum, indicating that this alloy design can be a feasible composition :or high power transformer.

Metallurgical Study of Bronze Artifacts Excavated from Miruksa Temple (미륵사지 출토 청동유물의 금속학적 연구)

  • Chung, K.R.;Kim, Y.C.;Maeng, S.C.
    • Journal of Conservation Science
    • /
    • v.1 no.1 s.1
    • /
    • pp.27-39
    • /
    • 1992
  • Metallurgical studies of the bronze artifacts excavated from Miruksa Temple were performed by chemical analysis and metallographic observation. Alloy systems of the bronze artifacts were classified into two groups of Cu-Sn and Cu-Sn-Pb, according to the items. The contents of impurities such as Sb, As, Ni and Fe in bronze artifacts are within the limiting range of the mod ern standard bronze castings. Chemical compositions of the kitchen utensils such as bronze vessels and dishes in the Unified Silla dynasty, are in the follow ing range, Cu : 74.8-79.4% and Sn : 18.6-21.1%. Chemical composition of the Buddha-image in Koryo dynasty are 820Cu-7.0Sn-10.3Pb, showing increased Pb content and decreased Sn content. The results of chemical analysis suggest that the chemical compositions were good controlled. Any casting defects such as voids and shrinkage holes are not found microscopically, indicating high casting skill. Zinc atoms are not contained in the all bronze artifacts of Miruksa Temple site. This is the common facts founded in the east asian bronze artifacts of Korea, China and Japan. It is comparable with the European bronze of Cu-Sn-Pb-Zn system, after the Middle Age.

  • PDF

Effect of Dimension Control of Piezoelectric Layer on the Performance of Magnetoelectric Laminate Composite

  • Cho, Kyung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.611-614
    • /
    • 2018
  • Laminate composites composed of $0.95Pb(Zr_{0.52}Ti_{0.48})O_3-0.05Pb(Mn_{1/3}Sb_{2/3})O_3$ piezoelectric ceramic and Fe-Si-B based magnetostrictive amorphous alloy are fabricated, and the effect of control of the areal dimensions and the thickness of the piezoelectric layer on the magnetoelectric(ME) properties of the laminate composites is studied. As the aspect ratio of the piezoelectric layer and the magnetostrictive layer increases, the maximum value of the ME voltage coefficient(${\alpha}_{ME}$) increases and the intensity of the DC magnetic field at which the maximum ${\alpha}_{ME}$ value appears decreases. Moreover, as the thickness of the piezoelectric layer decreases, ${\alpha}_{ME}$ tends to increase. The ME composites exhibit ${\alpha}_{ME}$ values higher than $1Vcm^{-1}Oe^{-1}$ even at the non-resonance frequency of 1 kHz. This study shows that, apart from the inherent characteristics of the piezoelectric composition, small thicknesses and high aspect ratios of the piezoelectric layer are important dimensional determinants for achieving high ME performance of the piezoelectric-magnetostrictive laminate composite.

Experimental Study on Four Cation Exchange Membranes in Electrosynthesis of Ammonium Persulfate

  • Wang, Chao;Zhou, Junbo;Gao, Liping
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.37-43
    • /
    • 2018
  • In order to improve current efficiency and decrease energy consumption in the electrosynthesis of ammonium persulfate, electrolytic properties of four cation exchange membranes, namely, the $JCM-II^{(R)}$ membrane, $Nafion^{(R)}$ 324 membrane CMI-$7000^{(R)}$ membrane and a self-made perfluorosulfonic ion exchange membrane (PGN membrane) were investigated using a sintered platinized titanium anode and a Pb-Sb-Sn alloy cathode in a self-made electrolytic cell. The effect of cell voltage and electrolyte flow rate on the current efficiency and the energy consumption were investigated. The results indicated that the PGN membrane could improve current efficiency to 94.85% and decrease energy consumption to $1119kWh\;t^{-1}$ (energy consumption per ton of the ammonium persulfate generated) under the optimal operating conditions and the highest current efficiency of the $JCM-II^{(R)}$ membrane, $Nafion^{(R)}$ 324 membrane and CMI-$7000^{(R)}$ membrane were 80.73%, 77.76% and 73.22% with their lowest energy consumption of $1323kWh\;t^{-1}$, $1539kWh\;t^{-1}$ and $2256kWh\;t^{-1}$, respectively. The PGN membrane has the advantages of high current efficiency and energy power consumption and has sufficient mechanical strength with the reinforced mesh. Therefore the PGN membrane will has good value in popularization in the industrial electrosynthesis of ammonium persulfate in the future.