• Title/Summary/Keyword: Pb-5Sn

Search Result 326, Processing Time 0.024 seconds

Aging Characteristic of Intermetallic Compounds and Bonding Strength of Flip-Chip Solder Bump (플립 칩 솔더 범프의 접합강도와 금속간 화합물의 시효처리 특성)

  • 김경섭;장의구;선용빈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • Flip-chip interconnection that uses solder bump is an essential technology to improve the performance of micro-electronics which require higher working speed, higher density, and smaller size. In this paper, the shear strength of Cr/Cr-Cu/Cu UBM structure of the high-melting solder bump and that of low-melting solder bump after aging is evaluated. Observe intermetallic compound and bump joint condition at the interface between solder and UBM by SEM and TEM. And analyze the shear load concentrated to bump applying finite element analysis. As a result of experiment, the maximum shear strength of Sn-97wt%Pb which was treated 900 hrs aging has been decreased as 25% and Sn-37wt%Pb sample has been decreased as 20%. By the aging process, the growth of $Cu_6/Sn_5$ and $Cu_3Sn$ is ascertained. And the tendency of crack path movement that is interior of a solder to intermetallic compound interface is found.

  • PDF

A Study on the Dielectric and Pyroelectric Properties of the $Pb(Sb_{1/2}Sn_{1/2})O_3-PbTiO_3-PbZrO_3$ Ceramics ($Pb(Sb_{1/2}Sn_{1/2})O_3-PbTiO_3-PbZrO_3$ 세라믹의 유전 및 초전 특성에 관한 연구)

  • Youn, Jong-Weon;Lee, Sung-Gap;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.91-93
    • /
    • 1989
  • x $Pb(Sb_{1/2}Sn_{1/2})O_3-PbTiO_3-PbZrO_3$, (0.05$\leq$x$\leq$0.30) ternary compound ceramics were fabricated by the mixed oxide method. The sintering temperature and time were $1200{\sim}1300[^{\circ}C]$, 2 hour, respectively. Increasing the PSS contents, the transition temperatures were decreased. The relative dielectric constant and Curie temperature of the 0.30PSS-0.20PT-0.50PZ specimens were 372, 190[$^{\circ}C$]. The pyroelectric coefficient, figure of merits for pyroelectric current and detectivity of the 0.25PSS-0.25PT-0.50PZ specimens had the good values, $5.41{\times}10^{-8}[C/cm^{2}K]$, $27.72{\times}10^{-12}[Ccm/J]$, $7.65{\times}10^{-10}{Ccm/J]$, respectively.

  • PDF

Bonding Strength of Cu/SnAgCu Joint Measured with Thermal Degradation of OSP Surface Finish (OSP 표면처리의 열적 열화에 따른 Cu/SnAgCu 접합부의 접합강도)

  • Hong, Won-Sik;Jung, Jae-Seong;Oh, Chul-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Bonding strength of Sn-3.0Ag-0.5Cu solder joint due to degradation characteristic of OSP surface finish was investigated, compared with SnPb finish. The thickness variation and degradation mechanism of organic solderability preservative(OSP) coating were also analyzed with the number of reflow process. To analyze the degradation degree of solder joint strength, FR-4 PCB coated with OSP and SnPb were experienced preheat treatment as a function of reflow number from 1st to 6th pass, respectively. After 2012 chip resistors were soldered with Sn-3.0Ag-0.5Cu on the pre-heated PCB, the shear strength of solder joints was measured. The thickness of OSP increased with increase of the number of reflow pass by thermal degradation during the reflow process. It was also observed that the preservation effect of OSP decreased due to OSP degradation which led Cu pad oxidation. The mean shear strength of solder joints formed on the Cu pads finished with OSP and SnPb were 58.1 N and 62.2 N, respectively, through the pre-heating of 6 times. Although OSP was degraded with reflow process, the feasibility of its application was proven.

Characteristic of Intermetallic Compounds for Aging of Lead Free Solders Applied to 48 $\mu$BGA (48 $\mu$BGA에 적용한 무연솔더의 시효처리에 대한 금속간화합물의 특성)

  • Shin, Young-Eui;Lee, Suk;Fujimoto, Kozo;Kim, Jong-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.37-42
    • /
    • 2001
  • The concerns of the toxicity and health hazard of lead in solders have demanded the research to find suitable lead-free solder alloys. It was discussed that effect of the intermetallic formation and structure on the reliability of solder joints. In this study, lead-free solder alloys with compositions of Sn/3.5Ag/0.75Cu, Sn/2.0Ag/0.5Cu/2.0Bi were applied to the 48 $\mu$BGA packages. Also, the lead-free solder alloys compared with eutectic Sn/37Pb solder using shear test under various aging temperature. Common $\mu$BGA with solder components was aged at $130^{\circ}C$, $150^{\circ}C$ and $170^{\circ}C$. And the each temperature applied to 300, 600 and 900 hours. The thickness of the intermetallics was measured for each condition and the activation energy for their growth was computed. The fracture surfaces were analyzed using SEM (Scanning Electron Microscope) with EDS (Energy Dispersive Spectroscopy). These results for reliability of lead-free interconnections are discussed.

  • PDF

Thermo-Mechanical Reliability of Lead-Free Surface Mount Assemblies for Auto-Mobile Application (무연 솔더가 적용된 자동차 전장부품 접합부의 열적.기계적 신뢰성 평가)

  • Ha, Sang-Su;Kim, Jong-Woong;Chae, Jong-Hyuck;Moon, Won-Chul;Hong, Tae-Hwan;Yoo, Choong-Sik;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.21-27
    • /
    • 2006
  • This study was focused on the evaluation of the thermo-mechanical board-level reliability of Pb-bearing and Pb-free surface mount assemblies. The composition of Pb-bearing solder was a typical Sn-37Pb and that of Pb-free solder used in this study was a representative Sn-3.0Ag-0.5Cu in mass %. Thermal shock test was chosen for the reliability evaluation of the solder joints. Typical $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed between both solders and Cu lead frame at the as-reflowed state, while a layer of $Cu_3Sn$ was additionally formed between the $Cu_6Sn_5$ and Cu lead frame during the thermal shock testing. Thickness of the IMC layers increased with increasing thermal shock cycles, and this is very similar result with that of isothermal aging study of solder joints. Shear test of the multi layer ceramic capacitor(MLCC) joints was also performed to investigate the degradation of mechanical bonding strength of solder joints during the thermal shock testing. Failure mode of the joints after shear testing revealed that the degradation was mainly due to the excessive growth of the IMC layers during the thermal shock testing.

Evaluation of Shear Strength for Pb-free Solder/Ni and Cu Plate Joints due to Reflow Time (리플로우 시간에 따른 Pb-free 솔더/Ni 및 Cu 기판 접합부의 전단강도 평가)

  • Ha, Byeori;Yu, Hyosun;Yang, Sungmo;Ro, Younsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.134-141
    • /
    • 2013
  • Reflow soldering process is essential in electronic package. Reflow process for a long time results from the decrease of reliability because IMC is formed excessively. Solder alloys of Sn-37Pb and Sn-Ag with different kinds of Cu contents (0, 0.5 and 1 wt.%) as compared with Ni and Cu plate joints are investigated according to varying reflow time. The interfaces of solder joints are observed to analyze IMC (intermetallic compound) growth rate by scanning electron microscope (SEM). Shear test is also performed by using SP (Share-Punch) tester. The test results are compared with the solder joints of two different plates (Ni and Cu plate). $Cu_6Sn_5$ IMCs are formed on Cu plate interfaces after reflows in all samples. Ni3Sn4 and $(Cu,Ni)_6Sn_5$ IMCs are also formed on Ni plate interfaces. The IMC layer forms are affected by reflow time and contents of solder alloy. These results show that mechanical strength of solder joints strongly depends on thickness and shape of IMC.

Effect of Cu-contained solders on shear strength of BGA solder joints

  • Shin, Chang-Keun;Huh, Joo-Youl
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.73-73
    • /
    • 2000
  • Shear strength of BGA solder joints on Cu pad was studied for Cu-contained Sn n.5 a and 2.5wt.% Cu) and Sn-Pb (o.5wt.% Cu) solders, with emphasis on the roles of the C Cu-Sn intermetallic layer thickness and the roughness of the interface between the i intermetallic layer and solder. The shear strength test was performed both for a as-soldered s이der joints with soldering reaction times of 1, 2, 4 min and for aged s이der j joints at 170 C up to 16 days. The Cu addition to both pure Sn and eutectic Sn-Pb s solders increased the intermetallic layer thickness at both soldering and aging t temperatures. The Cu addition also resulted in changes in the roughness of the interface b between the intermetallic layer and solder at as-soldered states. With increasing Cu c content. the interface roughened for Sn-Cu solders whereas it flattened for Sn-Pb-Cu s solders. The shear fractures in all solder joints investigated were confined in the bulk s solder rather than through the intermetallic layer. Therefore, the effect of Cu content in s solders on the shear strength of the solder joints was primarily attributed to its i influence on the micros$\sigma$ucture of bulk solder, such as the size and spatial distributions of CU6Sn5 precipitates. In addition, the critical intermetallic layer thickness for a m maximum shear strength seemed to depend on the Cu content in bulk solder.older.

  • PDF

A Study on the Characteristics of Martensitic Transformation Behaviors in In-X(X=Pb,Sn) Alloys (In-X(X=Pb,Sn) 합금의 마르텐사이트변태거동 특성에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.5
    • /
    • pp.233-238
    • /
    • 2010
  • The phase transformations and the shape memory effect in In-rich Pb alloys and In rich-Sn alloys have been studied by means of X-ray diffractometry supplemented by metallographic observations. The alloys containing 12~15 at.%Pb transform from the ${\alpha}_2$ (fct) phase to the ${\alpha}_1$ (fct) phase by way of an intermediate phase (m phase) on cooling. The results of X-ray diffraction show that the metastable intermediate phase is observed both on cooling and heating, and has a face-centered orthorhombic (fco) structure. It is concluded that the ${\alpha}_1{\rightleftarrows}{\alpha}_2$ transformation is expressed by the ${\alpha}_1{\rightleftarrows}m{\rightleftarrows}{\alpha}_2$ transformation both on usual cooling and heating with the rate more than $8{\times}10^{-3}$ K/s. The $m{\rightleftarrows}{\alpha}_2$ transformation takes place with a mechanism involving macroscopic shear and are of diffusionless (martensitic) type. The temperature hysteresis in the two transformations is 10~13 K between the heating and cooling transformations. The alloys containing 0~11 at.%Sn are -phase solid solutions with a face centered tetragonal structure (c/a > 1) at room temperature, the axial ratio increasing continuously with tin content. The In-(11~15) at.%Sn alloys are mixtures of ${\alpha}$ and ${\beta}$ phases, the ${\beta}$ phase having a f. c. tetragonal structure (c/a < 1). The alloys containing more than 15 at.%Sn are ${\beta}$-phase solid solutions. The In-(12.9~15.0) at.%Sn alloys show a shape memory effect only when quenched to the temperature of liquid nitrogen, although their effect becomes weak and finally disappears after keeping at room temperature for a long time. The ${\beta}{\rightarrow}{\alpha}^{\prime}$ phase transformation is of the diffusionless (martensitic) type, and takes place between 330 K at 12.9 at.%Sn and 150 K at 14.5 at.%Sn. The hysteresis of transformation temperatures on heating and cooling is considerably large (29~40 K), depending on the composition. Both In-Pb and In-Sn alloys showed distinct the shape memory effects.

A Study on the Eutectic Pb/Sn Solder Filip Chip Bump and Its Under Bump metallurgy(UBM)

  • Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In the flip chip interconnection on organic substrates using eutectic Pb/Sn solder bumps highly reliable Under Bump Metallurgy (UBM) is required to maintain adhesion and solder wettability. Various UBM systems such as 1$\mu$m Al/0.2$\mu$m Pd/1$\mu$m Cu, laid under eutectic Pb/Sn solder were investigated with regard to their interfacial reactions and adhesion proper-ties. The effects of numbers of solder reflow and aging time on the growth of intermetallic compounds (IMCs) and on the solder ball shear strength were investigated. Good ball shear strength was obtained with 1$\mu$m Al/0.2$\mu$m Ti/5$\mu$m Cu and 1$\mu$m Al/0.2$\mu$m ni/1$\mu$m Cu even after 4 solder reflows or 7 day aging at 15$0^{\circ}C$. In contrast 1$\mu$m Al/0.2$\mu$m Ti/1$\mu$m Cu and 1$\mu$mAl/0.2$\mu$m Pd/1$\mu$m 쳐 show poor ball shear strength. The decrease of the shear strength was mainly due to the direct contact between solder and nonwettable metal such as Ti and Al resulting in a delamination. In this case thin 1$\mu$m Cu and 0.2$\mu$m Pd diffusion barrier layer were completely consumed by Cu-Sn and pd-Sn reaction.

The Contents of Heavy Metals (Cd, Cr, As, Pb, Ni, and Sn) in the Selected Commercial Yam Powder Products in South Korea

  • Shin, Mee-Young;Cho, Young-Eun;Park, Chana;Sohn, Ho-Yong;Lim, Jae-Hwan;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.4
    • /
    • pp.249-255
    • /
    • 2013
  • Yam (Dioscorea) has long been used as foods and folk medicine with the approved positive effects for health promotion. Although consumption of yam products is increasing for health promotion, reports for the metal contamination in commercial yam powder products to protect the consumers are lacking. In this study, we aimed to assess whether the commercial yam powder products were heavy metal contaminated or not using the yam products from six commercial products from various places in South Korea. The contents of heavy metals (Cd, Cr, As, Pb, Ni, and Sn) in yam powder products were measured and compared to national and international food standard levels. Also, the metal contamination was monitored during the food manufacturing steps. The study results showed that the contents of heavy metals (Cd, Cr, As, and Pb) in yam powder products are similar to those in national 'roots and tubers' as well as in various crops. In comparison to three international standard levels (EU, Codex and Korea), Cd content in yam powder products was lower but Pb content was 5 times higher. Also, Pb, Ni, and Sn may have the potential to be contaminated during food manufacturing steps. In conclusion, the level of heavy metals (Cd, Cr, As, Ni, and Sn) except Pb is considered relatively safe on comparison to national and international food standard levels.