• Title/Summary/Keyword: Pb content

Search Result 830, Processing Time 0.03 seconds

A Study on the Characteristics of Soil in the Asian Dust Source Regions of Mongolia (황사발원지 (몽골) 토양에 대한 특성 분석)

  • Kim, Deok-Rae;Kim, Jeong-Soo;Ban, Soo-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.606-615
    • /
    • 2010
  • This study aims to identify the characteristics of soil in Mongolia, one of the major Asian dust sources that influence the Korean Peninsula. Soil particle size was analyzed and the result shows that sand (57.5~97.3%) was identified prominently in most regions, followed by silt (2.5~34.7%) and clay (0.0~7.8%). Soil pH of the covered regions were in the range 7.1~10.1, either weak alkaline or strong alkaline. Analysis of ion species in the soil samples exhibited that $Na^+$ ($91.9\;mg\;kg^{-1}$), $Cl^-$ ($65.9\;mg\;kg^{-1}$), and $Ca^{2+}$ ($53.5\;mg\;kg^{-1}$) were detected more in the soil than other species such as ${SO_4}^{2-}$ ($19.2\;mg\;kg^{-1}$), ${NO_3}^-$ ($46.6\;mg\;kg^{-1}$), ${NH_4}^+$ ($3.9\;mg\;kg^{-1}$), $K^+$ ($22.0\;mg\;kg^{-1}$), and $Mg^{2+}$ ($10.2\;mg\;kg^{-1}$). As for heavy metal content in the soil, concentrations of soil-borne metals including Fe, Al, Ca, Mg, and K tended to be high, while metals that come from manmade sources Pb, Cd, Cr, V, and Ni were remarkably low. The concentration of organic carbon (OC) was relatively high at $15.9\;{\mu}g\;mg^{-1}$, while elemental carbon (EC), directly released in the process of fossil fuel combustion, was not detected at all or found in very small amounts. The result indicates that pollution from manmade sources scarcely occurred. The analysis results from this study may contribute to improving modeling accuracy by providing input data for Asian dust prediction models, and be used as base data for determining the process of physiochemical transformation of Asian dust during long-range transport.

Geochemical Characteristics of Stream Sediments and Waters around the Pungam Landfill in Gwangju City, Korea (광주광역시 풍암매립지 주변 하상퇴적물과 물의 지구화학적 특성)

  • Park, Cheon-Young;Shim, In-Hyun;Bae, Jong-Phill;Ahn, Kun-Sang
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.290-302
    • /
    • 2003
  • This study was carried out to evaluate geochemical properties for stream sediments, surrounding soils, sludge collected in the drainage pipe of leachate and waters (stream water, groundwater, leachate) around the Pungam Landfill in Gwangju city. The stream sediments don't show any systematic trend of contents from upstream to downstream. The most enriched major element in the stream sediments is Fe (up to 7.08wt.% in GJ-23). Though stream sediment GJ-23 and GJ-34 were enriched by some heavy metals (eg. As, Cu, Zn), they do not constitute serious problems for environment consideration. The concentration of Fe (35.lwt.%) and As (38ppm) are significantly high in the GJ-8, which is soil specimen adjacent to leachate reservoir. The sludge (GJ-7) shows very high concentrations of As, Mn, Cr, Pb. In particular, the Cr content is 45.6 ppm, which exceeds the permitted level. The leachate is characterized by high TDS (2210-2470mg/L) and high electric conductivity (468, 530ms/cm), and enriched in both cation (Na, K) and anion (HCO$_3$). The leachate(PK-3) had a relatively high concentration of Cl, and is plotted in Na-Cl type on the Piper's diagram. The NO$_3$-N of the groundwater and stream water exceeded the permitted levels for drinking water.

Characteristics of Sn-Ag-Cu-In Solder Alloys Incorporating Low Ag Content (소량의 Ag를 함유하는 Sn-Ag-Cu-In계 솔더 재료의 특성 분석)

  • Yu, A-Mi;Lee, Jong-Hyun;Lee, Chang-Woo;Kim, Mok-Soon;Kim, Jeong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.18-18
    • /
    • 2007
  • 지난 수년 동안 Sn-3.0Ag-0.5Cu 합금은 전자산업의 표준 무연솔더 조성으로 전자제품의 제작에 사용되어져 왔으며, 그 신뢰성도 충분히 검증되어 대표적인 무연 솔더 조성으로의 입지를 굳혀왔다. 그러나 전자제품의 mobile화에 따른 내충격 신뢰성에 대한 요구와 최근의 급격한 Ag 가격의 상승은 Ag 함량의 축소에 의한 원가절감을 요청하게 되었으며, 이에 따라 소량의 Ag를 함유하는 솔더 조성 개발에 대한 연구가 산업 현장을 중심으로 절실히 요청되고 있다. Sn-Ag-Cu의 3원계 함긍에서 Ag는 합금의 융점을 낮추고, 강도와 같은 합금의 기계적 특성을 증가시키는 한편, 모재에 대한 합금의 젖음성을 향상시키는데 필수적인 원소로 인식되고 있다. 따라서 Sn-Ag-Cu의 3원계 함금에서 Ag의 함량을 감소시키게 되면, 합금액 액상선 온도와 고상선 온도가 벌어져 pasty range(또는 mush zone)가 증가하게 되고, wettability도 감소하게 되어 솔더 합금으로서의 요구 특성을 많이 상실하게 된다. 또한 Ag 함량을 감소시키게 되면 합금의 elongation이 향상되면서 내 impact 수명이 향상되는 효과를 볼 수 있으나, 합금의 creep 특성 및 기계적인 강도는 감소하면서 열싸이클링 수명은 감소하는 경향을 나타내게 된다. 따라서 솔더 합금의 내 impact 수명과 열싸이클링 수명을 동시에 만족시키지 위해서는 Ag 함량을 최적화하기 위한 고려가 필요하며, 합금원소에 대한 연구가 요청된다고 하겠다. 한편 Ag의 함량을 3wt.% 이상으로 첨가할 경우에도 비교적 느린 응고 속도에서는 조대한 판상의 $Ag_3Sn$ 상을 형성하는 경향이 있어 외관 물량을 야기 시킬 가능성이 매우 커지는 현상도 보고되고 있다. 따라서 Ag의 첨가량을 최적화 하면서 솔더 재료로서의 특성을 계속적으로 유지하기 위해서는 제 4 원소의 함유가 필수적이라고 할 수 있다. 본 연구에서는 Sn-Ag-Cu계에 첨부하는 제 4원소로서 In을 선택하였다. 비록 In은 Ag보다 고가이기 때문에 산업적인 적용을 위한 솔더 합금 원소로는 거의 각광받지 못했으나, 본 연구의 결과로는 In은 매우 소량 첨가할 경우에도 Sn-Ag-Cu계 합금, 특히 소량의 Ag를 함유하는 Sn-Ag-Cu계 합금의 wettabilty와 기계적 특성 향상에 매우 효과적임을 알 수 있었다. 결론적으로 본 연구를 통해 구현된 Sn-Ag-Cu-In계 최적 솔더 조성의 경우 Sn-3.0Ag-0.5Cu의 표준 조성에 비하여 약 18%의 원자재 가격 절감을 도모할 수 있을 것으로 예상되는 한편. Sn-3.0Ag-0.5Cu에 유사하거나 우수한 wettability 특성을 나타내었고. Sn-1.0Ag-0.5Cu 또는 Sn-l.2Ag-0.5Cu-0.05Ni 조성보다는 월등히 우수한 wettability 특성을 나타내었다. 더구나 Sn-Ag-Cu-In계 최적 솔더 조성은 합금의 강도 저하는 최소화 시키면서 합금의 elongation은 극적으로 향상시켜 합금의 toughness 값이 매우 우수한 특성을 가짐을 알 수 있었다. 이렇게 우수한 toughness 값은 솔더 조인트의 대표적 신뢰성 요구 특성인 열싸이클링 수명과 내 impact 수명을 동시에 향상시킬 수 있을 것으로 예상된다. 요컨대 본 연구를 통해 구현된 Sn-Ag-Cu-In계 솔더 조성은 최적 솔더 조성에서 요구되는 4가지 인자, 즉, 저렴한 원재료 가격, 우수한 wettability 특성, 합금 자체의 높은 toughness, 안정하고 낮은 성장 속도의 계면 반응층 생성을 모두 만족시키는 특징을 가짐으로서 기존 무연솔더 조성의 새로운 대안으로 자리 잡을 것으로 기대된다.

  • PDF

Development of Skin Health Promoting Materials Using Leuconostoc mesenteroides (중금속 흡착능 Leuconostoc mesenteroides CJNU 0705 균주를 활용한 피부 건강기능성 소재 개발)

  • Han, Min-Hui;Moon, Gi-Seong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.455-462
    • /
    • 2020
  • Leuconostoc mesenteroides CJNU 0705 was isolated from a breast milk sample and identified by 16S rRNA gene sequencing and confirmed by its ability to produce dextran from tryptic soy agar plates supplemented with 2% sucrose. This strain can absorb various heavy metals including lead (Pb) and cadmium (Cd) which are both found in fine dust and have been shown to be harmful to human skin. In addition, Leu. mesenteroides CJNU 0705 has demonstrated antimicrobial activity against Propionibacterium acnes, the primary causative agent of acne. Given these traits it was natural to evaluate the use of this strain in the fermentation of several natural extracts from green tea, carrot, annual wormwood, parsley, broccoli, and corn silk, which are known to improve skin health, to see if it could increase their dextran content when supplemented with no sucrose, 2% sucrose, or 2% sucrose and 3% yeast extract. The extracts supplemented with both yeast and sucrose were found to produce the most dextran, which was confirmed by the scanning electron microscope (SEM) images. These results suggest that Leu. mesenteroides CJNU 0705 and its fermented natural extracts could be used as functional materials for improving human skin health.

Quality Improvement of Crude Glycerol from Biodiesel Production Using Activated Carbon Derived from Krabok (Irvingia malayana) Seed Shells

  • Wuttichai Roschat;Sarunya Donrussamee;Phatcharanan Smanmit;Samlit Jikjak;Tappagorn Leelatam;Sunti Phewphong;Krittiyanee Namwongsa;Preecha Moonsin;Vinich Promarak
    • Korean Journal of Materials Research
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This research investigated the preparation of activated carbon derived from Krabok (Irvingia malayana) seed shells to improve the quality of crude glycerol obtained during biodiesel production. The activated carbon was prepared using a dry chemical activation method with NaOH, utilizing an innovative biomass incinerator. The results revealed that the resulting KC/AC-two-step exhibited favorable physicochemical adsorption properties, with a high surface area of 758.72 m2/g and an iodine number of 611.10 mg/g. These values meet the criteria of the industrial product standard for activated carbon No. TIS 900-2004, as specified by the Ministry of Industry in Thailand. Additionally, the adsorption efficiency for methylene blue reached an impressive 99.35 %. This developed activated carbon was then used to improve the quality of crude glycerol obtained from biodiesel production. The experimental results showed that the KC/AC-two-step increased the purity of crude glycerol to 73.61 %. In comparison, commercially available activated carbon (C/AC) resulted in a higher crude glycerol purity of 81.19 %, as analyzed by the GC technique. Additionally, the metal content (Zn, Cu, Fe, Pb, Cd, and Na) in purified glycerol using KC/AC-two-step was below the standards for heavy metals permitted in food and cosmeceuticals by the Food and Drug Administration of Thailand and the European Committee for Food Contact Materials and Articles. As a result, it can be inferred that Krabok seed shells have favorable properties for producing activated carbon suitable as an adsorbent to enhance crude glycerol purity. Furthermore, the improved crude glycerol from this research has potential for various industrial applications.

Effects of La2O3 Doping on Phase Transition Behavior and Electromechanical Strain Properties in Bismuth-Based Lead-Free Piezoelectric Ceramics (비스무스계 무연 압전 세라믹스의 상전이 거동 및 전기 기계적 변형 특성에 대한 La2O3 도핑 효과 연구)

  • Eun Seo Kang;Sung Jae Hyoung;Yubin Kang;Min Sung Park;Trang An Duong;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.457-463
    • /
    • 2024
  • (Bi1/2Na1/2)TiO3(BNT) piezoelectric ceramics are one of the promising materials that can replace Pb(Zr, Ti)O3(PZT) piezoelectric ceramics due to the high electromechanical strain properties. However, it is still difficult to use practical applications because the required electric field for inducing electromechanical strain is relatively higher than that of PZT ceramics. To overcome this problem, it has been intensively studied on doping impurity or modifying other ABO3 for BNT-based piezoelectric ceramics. Therefore, this study investigated the effects of La2O3 doping on the phase transition behavior and electromechanical strain properties in BNT-SrTiO3 (BNT-ST) lead-free piezoelectric ceramics. In the case of the temperature-dependent dielectric properties, it was confirmed that a phase transition from ferroelectrics to relaxors is induced with increasing La2O3 content. As a result, the electromechanical strain properties of BNT-ST ceramics were improved. The highest Smax/Emax value corresponding to 300 pm/V was obtained at 2 mol% La2O3-dopped BNT-ST ceramics. Accordingly, this study successfully demonstrated that La2O3 doping is effective on the inducing phase transition from ferroelectrics to relaxors and the improving electromechanical strain properties of BNT-ST lead-free piezoelectric ceramics.

Factors Related to Poor School Performance of Elementary School Children (국민학교아동의 학습부진에 관련된 요인)

  • Park, Jung-Han;Kim, Gui-Yeon;Her, Kyu-Sook;Lee, Ju-Young;Kim, Doo-Hie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.4 s.44
    • /
    • pp.628-649
    • /
    • 1993
  • This study was conducted to investigate the factors related to the poor school performance of the elementary school children. Two schools in Taegu, one in the affluent area and the other in the poor area, were selected and a total of 175 children whose school performance was within low 10 percentile (poor performers) and 97 children whose school performance were within high 5 percentile (good performers) in each class of 2nd, 4th and 6th grades were tested for the physical health, behavioral problem and family background. Each child had gone through a battery of tests including visual and hearing acuity, anthropometry (body weight, height, head circumference), intelligence (Kodae Stanford-Binet test), test anxiety (TAI-K), neurologic examination by a developmental pediatrician and heavy metal content (Pb, Cd, Zn) in hair by atomic absorption spectrophotometry. A questionnaire was administered to the mothers for prenatal and prenatal courses of the child, family environment, child's developmental history, and child's behavioral and learning problems. Another questionnaire was administered to the teachers of the children for the child's family background, arithmatic & language abilities and behavioral problem. The poor school performance had a significant correlation with male gender, high birth order, broken home, low educational and occupational levels of parents, visual problem, high test anxiety score, attention deficit hyperactivity disorder (ADHD), poor physical growth (weight, height, head circumference) and low I.Q. score. The factors that had a significant correlation with the poor school performance in multiple logistic regression analysis were child's birth order (odds ratio=2.06), male gender(odds ratio=5.91), broken home(odds ratio=9.29), test anxiety score(odds ratio=1.07), ADHD (odds ratio=9.67), I.Q. score (odds ratio=0.85) and height less than Korean standard mean-1S.D.(odds ratio=11.12). The heavy metal contents in hair did not show any significant correlation with poor school performance. However the lead and cadmium contents were high in males than in females. The lead content was negatively correlated with child's grade(P<0.05) and zinc was positively correlated with grade (P<0.05). among the factors that showed a significant correlation with the poor school performance, high birth order, short stature and ADHD may be modified by a good family planning, good feeding practice for infant and child, and early detection and treatment of ADHD. Also, teacher and parents should restrain themselves from inducing excessive test anxiety by forcing the child to study and over-expecting beyond the child's intellectual capability.

  • PDF

Development of Method for Possibility Assessment on Organic Resources for Using Raw Material of Compost (유기성자원의 퇴비원료로 활용 가능성 평가방법 개발)

  • Lim, Dong-Kyu;Lee, Seung-Hwan;Seong, Ki-Seog;So, Kyu-Ho;Shin, Jung-Du;Lee, Jeong-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.1
    • /
    • pp.77-84
    • /
    • 2006
  • This study was conducted to find a system for screening organic resources with 16 species, 62 samples which were selected to randomizing point from city, province and industrial areas in the whole country. Content of organic matters were $65.3%{\sim}98.0%$ in all samples so that they were largely over than 60%, raw material regulation of compost. Concentrations of total nitrogen and total phosphorus were $0.7{\sim}4.8%\;and\;0.8{\sim}5.0$, they could look for effect of the nitrogen and phosphorus supply as a raw material of compost. In case of 8 elements concentrations of heavy metal, they were too high to use as raw materials of compost which were over to regulation limit in Cu, Cr, Ni, and As from fiber industry, Ni from food company and leather industry, and the others are adapt to limit levels. HEM contents fro the highest to $113mg\;kg^{-1}$ from liber industry and PAHs content were the highest to $3,462ug\;kg^{-1}$ from paper-mill manufacture. Distribution of PAHs concentiations were naphthalene>phenanthrene>pyrene>fluoroanthene>acenaphthene. $Microtox{(R)}\;EC_{50}$ values for bioassay were pharmaceutical company>paper-mill manufacture>industrial area sewage sludge>fiber industry>urban sewage sludge>metropolitan sewage sludge. HEM between Zn, Cu, and Ni was significant at the 99% and between Cd was significant at the 95%, Microtox between Hg and BEM significant at the 95%.

Effect of Platelet-Activating Factor on Cyclic Nucleotide Level in Rat Uterine tissue during Preimplantation Period (흰쥐의 임신초기에 있어서 자궁 조직중 Cyclic Nucleotide의 변화 및 Platelet-Activating Factor의 영향에 관한 연구)

  • Park, Kyoung-Sik;Kwun, Jong-Kuk
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.18 no.2
    • /
    • pp.133-142
    • /
    • 1991
  • This study was carried out to observe the change in uterine cyclic nucleotide level and the effect of PAF on cyclic nucleotides in uterine tissue in early pregnany in order to understand reciprocal relation ship between PAF and cyclic nucleotides in pregnancy in the rat. The test groups were injected intramuscularly with $1{\mu}g$ of PAF or 1.25mg of BN-52021 on day 0, 1, 2, 3, 4 and 5 of pregnancy. The level of cyclic nucleotide in removed uterine tissue was assayed by using cyclic nucleotides test kits. The results showed that the cyclic AMP content in uterine tissue of non-pregnant at pro-oestrus rat was $2.91{\pm}0.33$ pmol/mg protein which was lower than those of pregnant rat. The cyclic GMP content in uterine tissue of non-pregnant rat was $0.39{\pm}0.20$ pmol/mg pro-tein which was also lower than those of pregnant rats. The maximum level in cAMP was $5.92{\pm}1.72$ pmol/mg protein on day 3 and cGMP, $1.03{\pm}0.22$ pmol/mg protein on day 4. On each day of pregnancy, PAF induced the increased cAMP level ompared with that of intact rat. That was significant on day 0, 2 and 4 of pregnancy, p<0.05, on the other hand PAF receptor antagonist, BN-52021 ecreased cAMP level in uterine tisssue. PAF as well as BN-52021 had not an consistent effect on changes in cGMP level. These results suggest that cyclic nucleotide levels in uterine tissue ware increased during early pregnancy and PAF influences cAMP level in uterine rather than cGMP level during peri-implantation period, accordingly demonstrating a possible involvement of PAF in the regulation of implantation-related events through cAMP-mediated process.

  • PDF

Effect of Immature Compost on Available Nutrient Capability and Heavy Metal Accumulation in Soil for Lettuce (Lactuca sativa L.) Cultivation (퇴비 내 영양소 및 중금속이 상추 재배에 미치는 영향)

  • Phonsuwan, Malinee;Lee, Min Ho;Moon, Byeong Eun;Kim, Young Bok;Kaewjampa, Naruemol;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.343-350
    • /
    • 2016
  • The aim of this study was to evaluate effects of immature compost on the amount of nutrient content, heavy metal concentration, and application rate that were used for lettuce cultivation. The characteristics of the two composts (Compost A (CA) was immature compost and Compost B (CB) was mature compost) were evaluated upon mixing with commercial soil at 0%, 25%, 50%, and 75% (w/w). The poor chemical characteristics were appeared by use of immature compost as soil amendment; the 50% and 75% rates were weakly acidic at pH 5.39 and 5.50, respectively. The total carbon content at using of 75% of the immature compost and mature compost increased the most to 14.5 and 6.5% and it significantly increased concentrations of the total nitrogen and phosphorus compared to control. As for 75% mature compost rate increased significantly the concentrations of Cu ($128mg\;kg^{-1}$), Zn ($260mg\;kg^{-1}$), Pb ($0.32mg\;kg^{-1}$) and, Cd ($0.48mg\;kg^{-1}$) compared to control, and the highest As concentration increased significantly at 75% and 50% (6.69 and $6.28mg\;kg^{-1}$) including in 25% immature compost as $6.48mg\;kg^{-1}$. However, all of the high compost rates significantly decreased the shoot biomass of lettuce. The immature compost was potentially amended at an application rate of 25% due to a slight salinity and low risk to heavy metal uptake on lettuce growth. This use may be available if the rate is lower than that used in this trial.