• Title/Summary/Keyword: Payload Module

Search Result 60, Processing Time 0.027 seconds

Implementation of SPH/RPB Module for Improved MP3 Audio Streaming (개선된 MP3 오디오 전송을 위한 SPH/RPH 모듈 구현)

  • 권장우;김수진;김익형;박부곤;우동훈
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.338-341
    • /
    • 2003
  • 최근의 인터넷 음악방송은 MP3 오디오를 기반으로 하는 TCP 프로토콜의 전송방식이 일반적이다. TCP방식의 전송은 HTTP 프로토콜을 이용한 파일 전송방식으로 네트워크의 부하가 급증할 경우 TCP의 특성으로 인해 음악의 끊김 현상이 발생하여 QoS 문제가 발생한다. 본 논문은 실시간 전송방식의 RTP(Real-time Transfer Protocol) 프로토콜을 이용하여 MP3 오디오 기반의 생방송 시스템 개발에 대한 연구로서, 기존의 TCP 방식의 음악의 끊김 현상을 개선하기 위한 모듈 구현을 목적으로 한다. 본 연구에서는 MP3 오디오 전송에 따른 QoS(Quality Of Service) 개선을 위하여 인터리빙 기법을 이용한 SPH/RPH(Send Payload Handler/ Receive Payload Handler) 모듈을 구현하였다.

  • PDF

Conceptual design of assembly and alignment for the OM(Optical Module) of large aperture Korsch type (대구경 Korsch형 탑재체 OM(Optical Module, 광구조제)의 조립 및 정렬 개념설계)

  • Jung, Dae-Jun;Jang, Hong-Sul;Lee, Eung-Shik;Lee, Deog-Gyu;Lee, Seung-Hoon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.40-44
    • /
    • 2007
  • Based on the optical design type, the large aperture payload has not only a different characteristic of design, assembly and alignment but also its own merits and demerits. The analysis of characteristic has been performed according to the optical design type and based on this result, our camera is 4 reflective mirror system based on the Korsch type. Each mirror assembly is to be verified in the mirror manufacturer and the Optical Module(OM) will be assembled, aligned and tested by KARI. The final performance of camera depends on the several factors, especially, the optical performance of its OM In parallel with the optical design the conceptual design of OM assembly and alignment has been performed. In this paper, the analysis of characteristic has been performed according to the optical design type and the conceptual design of OM assembly and alignment was described with regard to optical performance.

  • PDF

Structural Design Development of GOCI

  • Yeon Jeoung-Heum;Kang Song-Doug;Kim Jongah;Kang Gurrl.sil;Myung Hwan-Chun;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.104-107
    • /
    • 2005
  • COMS(Communication, Ocean, and Meteorological Satellite) is the geostationary satellite for the mission of satellite communication, ocean monitoring, and meteorological service. It is scheduled to be launched at the end of 2008. Ocean payload of COMS named as GOCI(Geostationary Ocean Color Imager) observes ocean color and derives the chlorophyll concentrlition, the concentration of dissolved organic material and so on. In operational oceanography, satellite derived data products are used to provide forecasting and now casting of the ocean and coastal water state. In this work, conceptual design of structural part of GOCI is carried out and two baseline concepts are proposed. The one is dioptric module that uses lens system and the other is TMA(Three Mirror Anastigmat) module that uses mirror system. Trade-off studies between two concepts are investigated by considering optical and mechanical performances. Finally, on-going tasks and future development plan are briefly discussed.

  • PDF

Design of a IPsec's Message Authentication Module HMAC (HMAC를 이용한 IPsec의 Message Authentication Module 설계)

  • Kim, Yong-Hoon;Ha, Jin-Suk;Lee, Kwang-Youb
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04b
    • /
    • pp.813-816
    • /
    • 2002
  • 현재 인터넷은 IPv4(Internetworking Protocol, version 4)를 사용하고 있다. 하지만 데이터 통신은 1970년대에 IPv4가 나온 이래에 발전을 거듭하여 왔다. IPv4는 빠르게 발전하는 인터넷에의 요구를 수용하기 위해 IPv6가 제안되었고 현재 표준이 되었다. IPv6에서는 암호화와 인증옵션들은 패킷의 신뢰성과 무결성을 등을 제공한다. 인터넷에서의 정보보호는 인터넷을 구성하는 여러 계층에서 이루어 질 수 있지만, IPsec에서는 AH(Authentication Header)프로토콜과 IPsec ESP(Encapsulating Security Payload)프로토콜 두 가지의 암호 프로토콜이 사용되지만 AH에서는 HMAC를 이용한 HMAC-MD5나 HMAC-SHA-1 중 하나를 반드시 기본 인증 알고리즘으로 지원하여야 한다. 본 논문에서는 MD5를 이용한 HMAC-MD5를 기준으로 설계하였으며, Iterative Architecture과 Full loop unrolling Architecture의 두 가지 구조를 설계하였다.

  • PDF

THE ANALYSIS OF PSM (POWER SUPPLY MODULE) FOR MULTI-SPECTRAL CAMERA IN KOMPSAT

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Chang Young Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.493-496
    • /
    • 2005
  • The PMU (Payload Management Unit) in MSC (Multi-Spectral Camera) is the main subsystem for the management, control and power supply of the MSC payload operation. The PMU shall handle the communication with the BUS (Spacecraft) OBC (On Board Computer) for the command, the telemetry and the communications with the various MSC units. The PMU will perform that distributes power to the various MSC units, collects the telemetry reports from MSC units, performs thermal control of the EOS (Electro-Optical Subsystem), performs the NUC (Non-Uniformity Correction) function of the raw imagery data, and rearranges the pixel data and output it to the DCSU (Data Compression and Storage Unit). The BUS provides high voltage to the MSC. The PMU is connected to primary and redundant BUS power and distributes the high unregulated primary voltages for all MSC sub-units. The PSM (Power Supply Module) is an assembly in the PMU implements the interface between several channels on the input. The bus switches are used to prevent a single point system failure. Such a failure could need the PSS (Power Supply System) requirement to combine the two PSM boards' bus outputs in a wired-OR configuration. In such a configuration if one of the boards' output gets shorted to ground then the entire bus could fail thereby causing the entire MSC to fail. To prevent such a short from pulling down the system, the switch could be opened and disconnect the short from the bus. This switch operation is controlled by the BUS.

  • PDF

Design Study of a Korean Mars Mission

  • Lee, Eun-Seok;Chang, Keun-Shik;Park, Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.2
    • /
    • pp.54-61
    • /
    • 2004
  • In this paper we carried out a design study for an unmanned Mars missionsuitable for Republic of Korea. The mission will use a KSLV series launch system,which is to place a one tonne payload into the LEO. We calculated the velocityincrements(AV) required for departure from Earth and insertion into the orbitaround Mars based on the mission opportunity data provided by NASA. Two typesof Mars modules - entry type and orbiter type - were considered in this studyWe calculated the mass of TPS(therma1 protection system) for the entry tvpe Marsmodule based on the heat transfer rate and heat load from the Mars atmosphere tothe surface of the TPS. The heat transfer rate and heat load were obtained throughan entry trajectory calculation. For the orbiter type Mars module, we calcuIated themass breakdown of the additional spacecraft which is to insert the Mars moduleinto the orbit around Mars. Other mass items were determined by proportioningfrom the existing Mars modules. This paper finally proposes the payload capacitiesfor each types of Mars modules.

Single Axis Vibration Isolation System Using Series Active-passive Approach (직렬형 능-수동 제진 방법을 이용한 1축 제진 시스템)

  • Banik, Rahul;Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.176-179
    • /
    • 2005
  • To control the vibration transmitted to the precision instruments from ground has always been of great interest among the researchers. This paper proposes a single axis vibration isolation system which can be used as a module far a table top six axis isolator for highly precise measurement and actuation system. The combined active-passive isolation principle is used for vertical vibration isolation by mounting the instrument on a passively damped isolation system made of Elastomer along with the active stage in series which consists of very stiff piezo actuator. The active stage works in combination with the passive stage for working as a very low frequency vibration attenuator. The active stage is isolated from the payload disturbance through the Passive stage and thus modularity in control is achieved. This made the control algorithm much easier as it does not need to be tuned to specific payload.

  • PDF

Engineering Model Design and Implementation of Mass Memory Unit for STSAT-2 (과학기술위성 2호 대용량 메모리 유닛 시험모델 설계 및 구현)

  • Seo, In-Ho;Ryu, Chang-Wan;Nam, Myeong-Ryong;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.115-120
    • /
    • 2005
  • This paper describes the design and implementation of engineering model(EM) of Mass Memory Unit(MMU) for Science and Technology Satellite 2(STSAT-2) and the results of integration test. The use of Field-Programmable Gate Array(FPGA) instead of using private electric parts makes a miniaturization and lightweight of MMU possible. 2Gbits Synchronous Dynamic Random Access Memory(SDRAM) module for mass memory is used to store payload and satellite status data. Moreover, file system is applied to manage them easily in the ground station. RS(207,187) code improves the tolerance with respect to Single Event Upset(SEU) induced in SDRAM. The simulator is manufactured to verify receiving performance of payload data.

ATM Cell Encipherment Method using Rijndael Algorithm in Physical Layer (Rijndael 알고리즘을 이용한 물리 계층 ATM 셀 보안 기법)

  • Im Sung-Yeal;Chung Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.83-94
    • /
    • 2006
  • This paper describes ATM cell encipherment method using Rijndael Algorithm adopted as an AES(Advanced Encryption Standard) by NIST in 2001. ISO 9160 describes the requirement of physical layer data processing in encryption/decryption. For the description of ATM cell encipherment method, we implemented ATM data encipherment equipment which satisfies the requirements of ISO 9160, and verified the encipherment/decipherment processing at ATM STM-1 rate(155.52Mbps). The DES algorithm can process data in the block size of 64 bits and its key length is 64 bits, but the Rijndael algorithm can process data in the block size of 128 bits and the key length of 128, 192, or 256 bits selectively. So it is more flexible in high bit rate data processing and stronger in encription strength than DES. For tile real time encryption of high bit rate data stream. Rijndael algorithm was implemented in FPGA in this experiment. The boundary of serial UNI cell was detected by the CRC method, and in the case of user data cell the payload of 48 octets (384 bits) is converted in parallel and transferred to 3 Rijndael encipherment module in the block size of 128 bits individually. After completion of encryption, the header stored in buffer is attached to the enciphered payload and retransmitted in the format of cell. At the receiving end, the boundary of ceil is detected by the CRC method and the payload type is decided. n the payload type is the user data cell, the payload of the cell is transferred to the 3-Rijndael decryption module in the block sire of 128 bits for decryption of data. And in the case of maintenance cell, the payload is extracted without decryption processing.

A NARX Dynamic Neural Network Platform for Small-Sat PDM (동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구)

  • Lee, Hae-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.809-817
    • /
    • 2020
  • In the design and development process of Small-Sat power distribution and transmission module, the stability of dynamic resources was evaluated by a deep learning algorithm. The requirements for the stability evaluation consisted of the power distribution function of the power distribution module and demand module to the SAR radar in Small-Sat. To verify the performance of the switching power components constituting the power module PDM, the reliability was verified using a dynamic neural network. The adoption material of deep learning for reliability verification is the power distribution function of the payload to the power supplied from the small satellite main body. Modeling targets for verifying the performance of this function are output voltage (slew rate control), voltage error, and load power characteristics. First, to this end, the Coefficient Structure area was defined by modeling, and PCB modules were fabricated to compare stability and reliability. Second, Levenberg-Marquare based Two-Way NARX neural network Sigmoid Transfer was used as a deep learning algorithm.