• Title/Summary/Keyword: Pavement crack

Search Result 186, Processing Time 0.022 seconds

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • v.24 no.4
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

A Study on the Conceptual Design and Technical Feasibility Analysis for the Development of Automated Pavement Crack Sealer (도로면 크랙실링 자동화장비의 실용화를 위한 개념 디자인 및 기술적 타당성 분석에 관한 연구)

  • Lee, Won-Jae;An, Chi-Hoon;Yoo, Hyun-Seok;Lee, Jeong-Ho;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.5
    • /
    • pp.103-116
    • /
    • 2011
  • Crack sealing is a maintenance technique commonly used to prevent water and debris penetration and reduce future degradation in pavement. In recent years, several systems for automatically routing and sealing pavement cracks have been developed in the highway construction and maintenance area. Automating pavement crack sealing can improve safety, productivity and quality, and reduce road user cost as well. The reduction in crew size and the increase in productivity of the automated sealing process will be translated directly into significant potential cost savings. The main objective of this study is to illustrate conceptual models for the development of the automated pavement crack sealer which meets domestic road condition and regulation, and to discuss its technical feasibilities. Conclusions are made concerning the applicability and the value of cantilever-typed pavement crack which is selected as the most feasible alternative in both economical and technical aspects.

A Study on the Development of Pavement Crack Recognition Algorithm Using Artificial Neural Network (신경망 학습 기법을 이용한 도로면 크랙 인식 알고리즘 개발에 관한 연구)

  • Yoo Hyun-Seok;Lee Jeong-Ho;Kim Young-suk;Sung Nak-won
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.561-564
    • /
    • 2004
  • Crack sealing automation machines' have been continually developed since the early 1990's because of the effectiveness of crack sealing that would be able to improve safety, quality and productivity. It has been considered challenging problem to detect crack network in pavement which includes noise (oil marks, skid marks, previously sealed cracks and inherent noise). It is required to develop crack network mapping and modeling algorithm in order to accurately inject sealant along to the middle of cut crack network. The primary objective of this study is to propose a crack network mapping and modeling algorithm using neural network for improving the accuracy of the algorithm used in the APCS. It is anticipated that the effective use of the proposed algorithms would be able to reduce error rate in image processing for detecting, mapping and modeling crack network as well as improving quality and productivity compared to existing vision algorithms.

  • PDF

Development of an Optimal Trajectory Planning Algorithm for Automated Pavement Crack Sealer (도로면 크랙실링 자동화 장비의 최적 경로계획 알고리즘 개발)

  • Yoo, Hyun-Seok;Lee, Jeong-Ho;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.68-79
    • /
    • 2010
  • During the last two decades, several tele-operated and machine-vision-assisted systems have been developed in construction and maintenance area such as pavement crack sealing, sewer pipe rehabilitation, and excavation. In developing such tele-operated and machine-vision-assisted systems, trajectory plans are very important tasks for optimal motions of robots whether their environments are structured or unstructured. This paper presents an optimal trajectory planning algorithm used for a machine-vision-assisted automatic pavement crack sealing system. In this paper, the performance of the proposed optimal trajectory planning algorithm is compared with the greedy trajectory plans which are used in previously developed pavement crack sealing systems. The comparison is based on computational cost versus overall gains in crack sealing efficiency. Finally, it is concluded that the proposed algorithm plays an important role in productivity improvement of the automatic pavement crack sealing system developed.

The Extacting Crack in Asphalt Concrete Pavement by Digital Image Processing (수치영상처리에 의한 아스팔트 포장노면의 균열 검출)

  • Jang, Ji-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.10 no.4 s.22
    • /
    • pp.77-84
    • /
    • 2002
  • Recently, damage of pavement represented by crack is depened by the increase of traffic demand up to ten million and wight, and interest about the efficient management of pavement is being increased gradually according to the growth of maintenance expense of road surface. In this study, the possibility of application for acquisition of crack information was tested by appling DCRP and digital image processing technique and measuring crack on road surface precisely. Based on this, objective and efficient road surface measurement was planned and done. Measuring crack width, acquire result of comparative high accuracy. So, it is considered that it can be utilized as plan draft data for deterioration estimation and repair reinforcement work of pavement.

  • PDF

Characteristics of Crack Spacing and Crack Width of Continuously Reinforced Concrete Pavement Based on Long-Term Field Surveys (장기간 현장조사를 통한 연속철근 콘크리트 포장의 균열간격과 균열폭 특성 분석)

  • Oh, Han Jin;Cho, Young Kyo;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.75-86
    • /
    • 2016
  • PURPOSES : The purpose of this study is to investigate characteristics of crack spacing and crack width and their relationship in continuously reinforced concrete pavement (CRCP) based on the data obtained from long-term field observations. METHODS : The crack spacings and crack widths are measured periodically over 10 years at two different CRCP sections: one with asphalt bond breaker beneath concrete slab, and the other with bonded lean concrete base beneath concrete slab. The effects of steel ratio, type of underlying layer, terminal treatment method, and seasonal temperature change on the crack characteristics are evaluated by analyzing the measured data. RESULTS : The CRCP with lean concrete base shows smaller crack spacings than those of the CRCP with asphalt bond breaker. As the steel ratio increases, both the crack spacing and crack width tend to decrease. The crack width becomes larger as the crack age increases, but once the crack age is over a certain value the crack width tends to converge. When the terminal anchor lug system is not used and the expansion joints are employed at the terminals, the crack spacings and crack widths increase near the terminal sections. The crack spacing and crack width seem to be proportional each other, but not necessarily linearly, and their relationship is more distinguished in the summer when the crack widths become smaller. CONCLUSIONS : The steel ratio, underlying layer type, terminal treatment method, and seasonal temperature change affect the characteristics of cracks and the crack spacing and crack width are related to each other.

Development of Rehabilitation Criteria of National Highway Pavement (국도 아스팔트 콘크리트 포장의 보수공법 결정 기준 연구)

  • Kim, Da-Hae;Kwon, Soo-Ahn;Suh, Young-Chan;Lim, Kwang-Soo
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.37-44
    • /
    • 2009
  • Currently the reasonability of threshold values for rutting and cracking does not clearly defined at the Pavement Rehabilitation Decision Tree on national highway PMS(Pavement Management System). The goal of this study is to provide the reasonable threshold values for the national highway asphalt concrete pavement rehabilitation. To achieve this goal, test section that represents typical asphalt concrete pavement of national highway was selected and pavement export were participated. Pavement condition survey has been conducted and pavement performance data at the selected roadway section were analyzed. From this study, reasonable threshold values of Pavement Rehabilitation Decision Tree were suggested based on the pavement expert's engineering judgement. In terms of crack repairs, the application of overlay after cutting is required to deteriorated area where existing crack ratio is over 35% and just overlay is required to where crack ratio is over 20%. On rutting, rut depth over 13mm is required to overlay after cutting and rut depth over 10mm is just needed to overlay.

  • PDF

A Study on Field Applicability Evaluation of the Hydrophobic - Low Viscosity Surface Treatment Material for Pavement Preventive Maintenance (소수성 특성을 이용한 저점도 AP 표면처리재의 현장 적용성 연구)

  • Choi, Jun Seong
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • PURPOSES : Surface treatment material for pavement preventive maintenance should be inspected field applicability. This study(Part II) aimed to checkup coating characteristics and performance analysis using lab and field tests. The hydrophobic - low viscosity filling material for pavement preventive maintenance is presented in Part I, which is a series of companion study. METHODS : Relative comparison between general asphalt mixtures and surface treatment asphalt mixtures are analyzed and measured for the field application such as indirect tensile strength ratio(TSR), abrasion resistance, crack propagation resistance, temperature resistance, coating thickness, permeability resistance and skid resistance in terms of british pendulum number(BPN). RESULTS : It is found that TSR, crack propagation resistance and permeability resistance is increased as against uncoated asphalt specimen. Abrasion resistance and temperature resistance is secured from the initial coating thickness point of view, which is about 0.2~0.3mm. Skid resistance on the surface treatment pavement is satisfied with the BPN criteria of national highway because of exposed aggregate and crack sill induced pavement deterioration and damage cracks. CONCLUSIONS : The hydrophobic - low viscosity surface treatment material for pavement preventive maintenance is validated on field applicability evaluation based on quantitative analysis of coating thickness and performance analysis using lab and field tests.

A Study of Improvement of Urban Pavement Maintenance Technique based on Pavement Condition Evaluation and FWD Data (도로포장 표면조사와 FWD정보에 기반한 도심지 도로포장 유지보수 기법 개선방안 연구)

  • Lee, Sangyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.532-541
    • /
    • 2016
  • The objective of this paper is to support accurate pavement condition assessment and decision of proper maintenance method and time by conducting visual inspection and calculating the remaining life of pavement from falling weight deflectometer(FWD) data. Each was implemented in the same long-term performance pavement(LTPP) sections. Visual inspection was executed to measure pavement condition indices such as crack, rutting and international roughness index(IRI) and the Seoul Pavement Index(SPI) was calculated based on these results. The dynamic modulus was back-calculated from the FWD data. The remaining pavement lives were determined from equivalent single axle loading(ESAL) and FWD data. Correlation of maintenance priority by each result value was examined. Consequently, the correlation between remaining life to Crack and Rutting was higher than the other factors or indicesbecause IRI is not related to FWD value and SPI value consists with IRI value and other indices. The R-square value of correlation of FWD with Crack and Rutting was 0.65, which indicated an insufficient correlation. Consequently, when decision of maintenance of method, time, etc. is determined, FWD data have to be considered with Crack and Rutting because of those relations.

Implementation and Control of Crack Tracking Robot Using Force Control : Crack Detection by Laser and Camera Sensor Using Neural Network (힘제어 기반의 틈새 추종 로봇의 제작 및 제어에 관한 연구 : Part Ⅰ. 신경회로망을 이용한 레이저와 카메라에 의한 틈새 검출 및 로봇 제작)

  • Cho Hyun Taek;Jung Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.290-296
    • /
    • 2005
  • This paper presents the implementation of a crack tracking mobile robot. The crack tracking robot is built for tracking cracks on the pavement. To track cracks, crack must be detected by laser and camera sensors. Laser sensor projects laser on the pavement to detect the discontinuity on the surface and the camera captures the image to find the crack position. Then the robot is commanded to follow the crack. To detect crack position correctly, neural network is used to minimize the positional errors of the captured crack position obtained by transformation from 2 dimensional images to 3 dimensional images.