• Title/Summary/Keyword: Patterson and Fourier methods

Search Result 7, Processing Time 0.018 seconds

The Crystal and Molecular Structure of Bromhexine$\cdot$HCl

  • Koo, Hung-Hoe;Jung, Yong-Je;Lee, Soon-Won
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.115-120
    • /
    • 1984
  • The crystals of bromhexine-HCl, $C_{14}$ H$_{21}$ N$_{2}$Br$_{2}$Cl, are orthohombic, space group Pca2 with a = 14.598(2)A, b=12.461(3)A, c =9 9.186(1) A and Z = 4. Intensity dat for 967 reflections (Fobs > 6.sigma.(F)) were collected on a Rigaku-Denki automatic four circle diffractometer. The structure was solved by the Patterson and Fourier methods. Refinements were carried out to the final R value of 0.082. The cyclohexane ring has a normal chair form and the benzene ring is planar. There are three independenet hydrogen bounds in the structure. One is an intermolecular hydrogen bond (N-H... Cl) and the others are intramolecular hydrogen bonds (N-H...Br, N$^{+}$-H...Cl$^{[-10]}$ ) Apart from the hydrogen bounding system the molecules are held together in the crystal by van der Waals force.e.

  • PDF

The crystal and molecular structure of chlorpropamide

  • Koo, Chung-Hoe;Cho, Sung-Il;Yeon, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1980
  • Chlorpropamide, $C_{10}H_{13}N_{2}O_{3}SCI$, forms orthofombic crystals of space group $P_{2}_{ 1}2_{1}2_{1}$ with a 9.066 $\pm$ 0.004, b = 5.218 $\pm$ 0.003, c = 26, 604 $\pm$, 0.008 $\AA$, and four molecules per cell. Three dimensional photographic data were collected with Mo-K$\alpha$ radiation. The structure was determined using Patterson, Fourier and Difference syntheses methods and refined by the block-diagonal least-squares methods with anisotropic thermal parameters for all nonhydrogen atoms and isotropic thermal parameters for all hydrogen atomes. The final R value was 0.10 for the 1823 observed independent reflections. The dihedral angle between the planes through the benzene ring and the urea goup is 99$^{\circ}$. The conformational angle formed by the projection of the S-C(1) with that of N(1)-C(7) when the projection is taken along the S-N(1) bond is 76$^{\circ}$. The molecule appears to form with neighbouring molecules two hydrogen bonds, N(1)..H...O(3) and N(2)-H...0(2) of lengths 2.774 and 2.954$\AA$ respectively related by screw diads parallel to the a axis. Adjacent molecules parallel to b and c axis are bound together by van der Wasls forces.

  • PDF

The Crystal and Molecular Structure of Salicylaldehyde-4-morpholinothiosemicarbazone (Salicylaldehyde-4-morpholinothiosemicarbazone의 결정 및 분자구조)

  • C. H. Koo;H. S. Kim;C. T. Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.3-15
    • /
    • 1977
  • Crystals of salicylaldehyde-4-morpholinothiosemicarbazone, $C_{12}H_{15}O_2N_3S$, are orthorhombic with space group Pna21. Unit-cell dimensions are a = 11.85(5), b = 15.45(5) c = 7.18(3)${\AA}$ with z = 4. Three-dimensional intensity data were collected from the multiple-film equi-inclination Weissenberg photographs taken with $CuK{\alpha}$ radiation. The intensities were estimated visually. The structure was solved by Patterson and Fourier methods and refined by the block-diagonal least-squares methods until the final R value becomes 0.11 for the 1064 observed independent reflections. The morpholine ring has a chair form. The rest atoms of salicylaldehyde-4-morpholinothiosemicarbazone molecule excluding morpholine ring and sulfur atom approximately lie on a plane. The hydroxyl group of the salicylaldehyde and the nitrogen atom of the thiosemicarbazone form an intramolecular hydrogen bond, $O-H{\cdot}{\cdot}{\cdot}N$, of 2.67${\AA}$. The short intermolecular distances all appear to be normal van der Waals contacts.

  • PDF

The Crystal and Molecular Structure of p-Phenylenediamine Dihydroperchlorate (p-Phenylenediamine Dihydroperchlorate의 결정 및 분자구조)

  • Ahn Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.5
    • /
    • pp.320-329
    • /
    • 1977
  • p-Phenylenediamine dihydroperchlorate, $C_6H_4N_2H_4{\cdot}2HC1O_4$, crystallizes in space group $P\={1}$ with $a=4.79{\pm}0.02,\;b=9.03{\pm}0.02,\;c=7.12{\pm}0.03{\AA},\;{\alpha}=109.4{\pm}0.2,\;{\beta}=79.6{\pm}0.2,\;r=104.6{\pm}0.2^{\circ},\;Z=1$. The structure has been solved by the Patterson and Fourier methods. The refinement by block-diagonal least-squares cycles gives R = 0.13 for 387 observed reflexions collected on equi-inclination Weissenberg photographs with CuK${\alpha}$ radiation. There are two different types of five hydrogen bonds. The first type consists of one trifurcated N${\cdot}{\cdot}{\cdot}$O hydrogen bond and the second of two normal N${\cdot}{\cdot}{\cdot}$O hydrogen bonds, both of which exist between the amino group and the perchlorate, groups. A p-phenylenediamine group is approximately planar within an experimental error and bonded to twelve perchlorates: ten perchlorates forming hydrogen bonds and two being contacted with the van der Waals forces. A perchlorate group is surrounded by six p-phenylenediamines and four perchlorates; among the six p-phenylenediamines, five of them are hydrogen-bonded, and the rest contacted with the van der Waals force.ce anaysis of our samples and investigated the variarions in the values of parameters obtained through fitting the theoretical impedance to the experimental impedance. The characters of the dielectric constant and the impedance showed abnormal variations for the 0.2 at K-doped NSBN ceramics, which we were able to interpret in terms of the variations in the number A-site vacancies with the K doping ratio. From these results, A-site vacancies are thought to be space charges that influence the ferroelectric properties of NSBN ceramics.

  • PDF

The Crystal Structure of Rubidium Hydrogen Carbonate ($RbHCO_3$) (炭酸水素루비듐의 結晶構造)

  • Kim Moon Il
    • Journal of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 1969
  • The crystal structure of rubidium hydrogen carbonate has been determined by single crystal X-ray diffraction method. the crystals are monoclinic with a = 15.05 $\AA$, b = 5.83 $\AA$, c = 4.02 $\AA$, and $\beta$ = $107^{\circ}.$ There are four chemical units per unit cell and the space-group was fixed as $C2-C^3_2$. Patterson and trial-and-error methods gave the approximate structure and its refinements were made by two-dimentional Fourier summation. The Co3 group is planar with tshhe C-O distances of 1.32 $\AA$, 1.32 $\AA$, and 1.33 $\AA$ within experimental error and the two $CO_3$ groups are linked together to form a complex anion [$H_2C_2O_6$] with the O-H${\cdot}{\cdot}{\cdot}$O distance, 2.53 $\AA.$ Two molecules of $RbHCO_3$ make the dimer structure with two hydrogen bonds. The values of reliability factor for $F_{(hol)}$, $F_{(hko)}$and $F_{(okl)}$are 0.15, 0.15 and 0.17 respectively. Each rubidium ion has eight oxygen neighbours with the Rb-O distances of 2.84~3.11 $\AA.$.

  • PDF

The Crystal Structure of Ethylenediamine Dihydrochloride $ClH{\cdot}H_2N{\cdot}CH_2{\cdot}CH_2{\cdot}NH_2{\cdot}HCl$ (Ethylenediamine 鹽酸鹽의 結晶構造)

  • Chung Hoe Koo;Moon Il Kim;Chung Soo Yoo
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.293-298
    • /
    • 1963
  • The crystal structure of ethylenediamine dihydrochloride has been determined by the two-dimensional Patterson methods and refined by two-dimensional Fourier syntheses. The unit cell dimensions are a = 4.44${\pm}$0.02, b = 6.88${\pm}$0.02, c = 9.97${\pm}$0.02 ${\AA}$, ${\beta}$ = 92${\pm}$$1^{\circ}$. The space group is $P2_1_{/c}$. The carbon and nitrogen atoms in the ethylenediamine itself lie on one plane and its structure has a trans-form with a centre of symmetry in it, and C-C distance of 1.54 ${\AA}$, C-N distance of 1.48${\AA}$ and C-C-N bond angle of $109.07^{\circ}$. The molecules are linked by N-H${\cdots}$Cl hydrogen bonds with distance of 3.14, 3.16 and 3.22 ${\AA}$ forming three dimensional network. The values of reliability factor for F(okl), F(hol) and F(hko) are 0.11, 0.10 and 0.09 respectively.

  • PDF

The Crystal and Molecular Structure of Sulfadiazine (Sulfadiazine의 結晶 및 分子構造)

  • Shin Hyun So;Ihn Gwon Shik;Kim Hoon Sup;Koo Chung Hoe
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.329-340
    • /
    • 1974
  • Sulfadiazine, $C_{10}H_{10}N_4O_2S$, forms monoclinic crystals of space group $P21}c$ from a mixture of acetone and ethanol with $a=13.71{\pm}0.04,\;b=5.84{\pm}0.03,\;c=15.11{\pm}0.05{\AA},\;{\beta}=115.0{\pm}0.3^{\circ}$, and four molecules per cell. Three dimensional photographic data were collected with $CuK\alpha$ radiation. The structure was determined using Patterson and Fourier synthesis methods and refined by block diagonal least-squares methods with isotropic thermal parameter for all non-hydrogen atoms. The final R value was 0.15 for the 1517 observed independent reflections. The dihedral angle between the planes through the benzene ring and the pyrimidine ring is $76^{\circ}$. The conformational angle formed by the projection of the S-C(5) bond with that of N(1)-C(1) where the projection is taken along the S-N(1) bond is $77^{\circ}$. The imino nitrogen atom, N(1), and pyrimidine nitrogen atom, N(3), form intermolecular $N-H{\cdots}N$ hydrogen bond between the molecules related by center of symmetry. Amino nitrogen atom, N(4), forms two intermolecular $N-H{\cdots}O$ hydrogen bonds, with O(1) and O(2) atoms of different molecules separated by b. A two dimensional network of hydrogen bonds form infinite molecular sheets parallel to the (100) plane. Adjacent sheets are bound together by van der Waals forces.

  • PDF